AoPS Community

Brazilian Undergraduate Math Olympiad 2021

www.artofproblemsolving.com/community/c3043280
by Johann Peter Dirichlet

Problem 1 Consider the matrices like

$$
M=\left(\begin{array}{lll}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right)
$$

such that $\operatorname{det}(M)=1$.
Show that
a) There are infinitely many matrices like above with $a, b, c \in \mathbb{Q}$
b) There are finitely many matrices like above with $a, b, c \in \mathbb{Z}$

Problem 2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ from C^{2} (id est, f is twice differentiable and $f^{\prime \prime}$ is continuous.) such that for every real number t we have $f(t)^{2}=f(t \sqrt{2})$.

Problem 3 Find all positive integers k for which there is an irrational $\alpha>1$ and a positive integer N such that $\left\lfloor\alpha^{n}\right\rfloor$ is of the form $m^{2}-k$ com $m \in \mathbb{Z}$ for every integer $n>N$.

Problem 4 For every positive integeer $n>1$, let $k(n)$ the largest positive integer k such that there exists a positive integer m such that $n=m^{k}$.

Find

$$
\lim _{n \rightarrow \infty} \frac{\sum_{j=2}^{j=n+1} k(j)}{n}
$$

Problem 5 Find all triplets $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{R}^{3}$ such that there exists a matrix $A_{3 \times 3}$ with all entries being non-negative reals whose eigenvalues are $\lambda_{1}, \lambda_{2}, \lambda_{3}$.

Problem 6 We recursively define a set of goody pairs of words on the alphabet $\{a, b\}$ as follows:

- (a, b) is a goody pair;
$-(\alpha, \beta) \neq(a, b)$ is a goody pair if and only if there is a goody pair (u, v) such that $(\alpha, \beta)=(u v, v)$ or $(\alpha, \beta)=(u, u v)$

Show that if (α, β) is a good pair then there exists a palindrome γ (possibly empty) such that $\alpha \beta=a \gamma b$

