AoPS Community

www.artofproblemsolving.com/community/c3043781
by Iora

A1 Find the minimum positive value of $1 * 2 * 3 * 4 * \ldots * 2020 * 2021 * 2022$ where you can replace $*$ as + or -

N2 If $x, y, z \in \mathbb{N}$ and $2 x^{2}+3 y^{3}=4 z^{4}$, Prove that $6 \mid x, y, z$
A3 Let $x, y, z \in \mathbb{R}^{+}$and $x^{2}+y^{2}+z^{2}=x+y+z$. Prove that

$$
x+y+z+3 \geq 6 \sqrt[3]{\frac{x y+y z+z x}{3}}
$$

C4 There is a $8 * 8$ board and the numbers $1,2,3,4, \ldots, 63,64$. In all the unit squares of the board, these numbers are places such that only 1 numbers goes to only one unit square. Prove that there is atleast $42 * 2$ squares such that the sum of the numbers in $2 * 2$ is greater than 100 .

G5 Let $A B C$ be an acute triangle and G be the intersection of the meadians of triangle $A B C$. Let D be the foot of the altitude drawn from A to $B C$. Draw a parallel line such that it is parallel to $B C$ and one of the points of it is A.Donate the point S as the intersection of the parallel line and circumcircle $A B C$. Prove that S, G, D are co-linear

