APMO 2022

www.artofproblemsolving.com/community/c3046774
by Jalil_Huseynov

1 Find all pairs (a, b) of positive integers such that a^{3} is multiple of b^{2} and $b-1$ is multiple of $a-1$.

2 Let $A B C$ be a right triangle with $\angle B=90^{\circ}$. Point D lies on the line $C B$ such that B is between D and C. Let E be the midpoint of $A D$ and let F be the seconf intersection point of the circumcircle of $\triangle A C D$ and the circumcircle of $\triangle B D E$. Prove that as D varies, the line $E F$ passes through a fixed point.

3 Find all positive integers $k<202$ for which there exist a positive integers n such that

$$
\left\{\frac{n}{202}\right\}+\left\{\frac{2 n}{202}\right\}+\cdots+\left\{\frac{k n}{202}\right\}=\frac{k}{2}
$$

4 Let n and k be positive integers. Cathy is playing the following game. There are n marbles and k boxes, with the marbles labelled 1 to n. Initially, all marbles are placed inside one box. Each turn, Cathy chooses a box and then moves the marbles with the smallest label, say i, to either any empty box or the box containing marble $i+1$. Cathy wins if at any point there is a box containing only marble n.
Determine all pairs of integers (n, k) such that Cathy can win this game.
5 Let a, b, c, d be real numbers such that $a^{2}+b^{2}+c^{2}+d^{2}=1$. Determine the minimum value of $(a-b)(b-c)(c-d)(d-a)$ and determine all values of (a, b, c, d) such that the minimum value is achived.

