Art of Problem Solving

AoPS Community

Math olympiad for the French Speaking, 2022

www.artofproblemsolving.com/community/c3049296
by parmenides51, hood09

- Juniors
$1 \quad$ find all the integer $n \geq 1$ such that $\lfloor\sqrt{n}\rfloor \mid n$
2 We consider an $n \times n$ table, with $n \geq 1$. Aya wishes to color k cells of this table so that that there is a unique way to place n tokens on colored squares without two tokens are not in the same row or column. What is the maximum value of k for which Aya's wish is achievable?

3 Let $\triangle A B C$ a triangle, and D the intersection of the angle bisector of $\angle B A C$ and the perpendicular bisector of $A C$. the line parallel to $A C$ passing by the point B, intersect the line $A D$ at X. the line parallel to $C X$ passing by the point B, intersect $A C$ at $Y . E=(A Y B) \cap B X$. prove that C, D and E collinear.

4 find the smallest integer $n \geq 1$ such that the equation :

$$
a^{2}+b^{2}+c^{2}-n d^{2}=0
$$

has $(0,0,0,0)$ as unique solution.

- \quad Seniors

1 find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$
such that $f(m+n)+f(m) f(n)=n^{2}(f(m)+1)+m^{2}(f(n)+1)+m n(2-m n)$ holds for all $m, n \in \mathbb{Z}$

2 To connect to the OFM site, Alice must choose a password. The latter must be consisting of n characters among the following 27 characters:

$$
A, B, C, \ldots, Y, Z, \#
$$

We say that a password m is redundant if we can color in red and blue a block of consecutive letters of m in such a way that the word formed from the red letters is identical to the word formed from blue letters. For example, the password $H \# Z B Z J B J Z$ is redundant, because it contains the ZBZJBJ block, where the word $Z B J$ appears in both blue and red. At otherwise, the $A B C A C B$ password is not redundant.
Show that, for any integer $n \geq 1$, there exist at least 18^{n} passwords of length n, that is to say formed of n characters each, which are not redundant.
$3 \quad$ Let $A B C$ be a triangle and Γ its circumcircle. Denote Δ the tangent at A to the circle Γ. Γ_{1} is a circle tangent to the lines $\Delta,(A B)$ and $(B C)$, and E its touchpoint with the line $(A B)$. Let Γ_{2} be a circle tangent to the lines $\Delta,(A C)$ and $(B C)$, and F its touchpoint with the line $(A C)$. We suppose that E and F belong respectively to the segments $[A B]$ and $[A C]$, and that the two circles Γ_{1} and Γ_{2} lie outside triangle $A B C$. Show that the lines $(B C)$ and $(E F)$ are parallel.

4 find all positive integer $a \geq 2$ and $b \geq 2$ such that a is even and all the digits of $a^{b}+1$ are equals.

