

AoPS Community

2012 CIIM

IV Iberoamerican Interuniversitary Mathematics Competition - Mexico www.artofproblemsolving.com/community/c304935 by Ozc

Problem 1 For each positive integer n let A_n be the $n \times n$ matrix such that its a_{ij} entry is equal to $\binom{i+j-2}{j-1}$ for all $1 \le i, j \le n$. Find the determinant of A_n .

Problem 2 A set $A \subset \mathbb{Z}$ is "padre" if whenever $x, y \in A$ with $x \leq y$ then also $2y - x \in A$. Prove that if A is "padre", $0, a, b \in A$ with 0 < a < b and d = g.c.d(a, b) then

$$a+b-3d, a+b-2d \in A.$$

Problem 3 Let *a*, *b*, *c*, the lengths of the sides of a triangle. Prove that

$$\sqrt{\frac{(3a+b)(3b+a)}{(2a+c)(2b+c)}} + \sqrt{\frac{(3b+c)(3c+b)}{(2b+a)(2c+a)}} + \sqrt{\frac{(3c+a)(3a+c)}{(2c+b)(2a+b)}} \ge 4.$$

Problem 4 Let $f(x) = \frac{\sin(x)}{x}$ Find

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \sqrt{1 + f'(x)^2} dx.$$

Problem 5 Let $D = \{0, 1, ..., 9\}$. A direction function for D is a function $f : D \times D \rightarrow \{0, 1\}$. A real $r \in [0, 1]$ is compatible with f if it can be written in the form

$$r = \sum_{j=1}^{\infty} \frac{d_j}{10^j}$$

with $d_j \in D$ and $f(d_j, d_{j+1}) = 1$ for every positive integer j.

Determine the least integer k such that for any direction function f, if there are k compatible reals with f then there are infinite reals compatible with f.

Problem 6 Let $n \ge 2$ and $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ a polynomial with real coefficients. Show that if there exists a positive integer k such that $(x - 1)^{k+1}$ divides p(x) then

$$\sum_{j=0}^{n-1} |a_j| > 1 + \frac{2k^2}{n}.$$

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.