AoPS Community

IV Iberoamerican Interuniversitary Mathematics Competition - Mexico

www.artofproblemsolving.com/community/c304935
by Ozc

Problem 1 For each positive integer n let A_{n} be the $n \times n$ matrix such that its $a_{i j}$ entry is equal to $\binom{i+j-2}{j-1}$ for all $1 \leq i, j \leq n$. Find the determinant of A_{n}.

Problem 2 A set $A \subset \mathbb{Z}$ is "padre" if whenever $x, y \in A$ with $x \leq y$ then also $2 y-x \in A$. Prove that if A is "padre", $0, a, b \in A$ with $0<a<b$ and $d=g . c . d(a, b)$ then

$$
a+b-3 d, a+b-2 d \in A .
$$

Problem 3 Let a, b, c, the lengths of the sides of a triangle. Prove that

$$
\sqrt{\frac{(3 a+b)(3 b+a)}{(2 a+c)(2 b+c)}}+\sqrt{\frac{(3 b+c)(3 c+b)}{(2 b+a)(2 c+a)}}+\sqrt{\frac{(3 c+a)(3 a+c)}{(2 c+b)(2 a+b)}} \geq 4 .
$$

Problem 4 Let $f(x)=\frac{\sin (x)}{x}$ Find

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \sqrt{1+f^{\prime}(x)^{2}} d x
$$

Problem 5 Let $D=\{0,1, \ldots, 9\}$. A direction function for D is a function $f: D \times D \rightarrow\{0,1\}$. A real $r \in[0,1]$ is compatible with f if it can be written in the form

$$
r=\sum_{j=1}^{\infty} \frac{d_{j}}{10^{j}}
$$

with $d_{j} \in D$ and $f\left(d_{j}, d_{j+1}\right)=1$ for every positive integer j.
Determine the least integer k such that for any direction fuction f, if there are k compatible reals with f then there are infinite reals compatible with f.

Problem 6 Let $n \geq 2$ and $p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ a polynomial with real coefficients. Show that if there exists a positive integer k such that $(x-1)^{k+1}$ divides $p(x)$ then

$$
\sum_{j=0}^{n-1}\left|a_{j}\right|>1+\frac{2 k^{2}}{n}
$$

