V Iberoamerican Interuniversitary Mathematics Competition - Colombia

www.artofproblemsolving.com/community/c305023
by Ozc

Problem 1 Given two natural numbers m and n, denote by $\overline{m . n}$ the number obtained by writing m followed by n after the decimal dot.
a) Prove that there are infinitely many natural numbers k such that for any of them the equation $\overline{m . n} \times \overline{n . m}=k$ has no solution.
b) Prove that there are infinitely many natural numbers k such that for any of them the equation $\overline{m . n} \times \overline{n . m}=k$ has a solution.

Problem 2 Consider a polinomial $p \in \mathbb{R}[x]$ of degree n and with no real roots. Prove that

$$
\int_{-\infty}^{\infty} \frac{\left(p^{\prime}(x)\right)^{2}}{(p(x))^{2}+\left(p^{\prime}(x)\right)^{2}} d x
$$

converges, and is less or equal than $n^{3 / 2} \pi$.
Problem 3 Given a set of boys and girls, we call a pair (A, B) amicable if A and B are friends. The friendship relation is symmetric. A set of people is affectionate if it satisfy the following conditions:
i) The set has the same number of boys and girls.
ii) For every four different people A, B, C, D if the pairs $(A, B),(B, C),(C, D)$ and (D, A) are all amicable, then at least one of the pairs (A, C) and (B, D) is also amicable.
iii) At least $\frac{1}{2013}$ of all boy-girl pairs are amicable.

Let m be a positive integer. Prove that there exists an integer $N(m)$ such that if a affectionate set has al least $N(m)$ people, then there exists m boys that are pairwise friends or m girls that are pairwise friends.

Problem 4 Let $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}$ be positive real number and $F, G:(0, \infty) \rightarrow(0, \infty)$ be to differentiable and positive functions that satisfy the identities:

$$
\begin{aligned}
& \frac{x}{F}=1+a_{1} x+b_{1} y+c_{1} G \\
& \frac{y}{G}=1+a_{2} x+b_{2} y+c_{2} F .
\end{aligned}
$$

Prove that if $0<x_{1} \leq x_{2}$ and $0<y_{2} \leq y_{1}$, then $F\left(x_{1}, x_{2}\right) \leq F\left(x_{2}, y_{2}\right)$ and $G\left(x_{1}, y_{1}\right) \geq G\left(x_{2}, y_{2}\right)$.

Problem 5 Let A, B be $n \times n$ matrices with complex entries. Show that there exists a matrix T and an invertible matrix S such that

$$
B=S(A+T) S^{-1}-T \Longleftrightarrow \operatorname{tr}(A)=\operatorname{tr}(B)
$$

Problem 6 Let (X, d) be a metric space with $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$. Suppose that X is connected and compact. Prove that there exists an $\alpha \in \mathbb{R}_{\geq 0}$ with the following property: for any integer $n>$ 0 and any $x_{1}, \ldots, x_{n} \in X$, there exists $x \in X$ such that the average of the distances from x_{1}, \ldots, x_{n} to x is α i.e.

$$
\frac{d\left(x, x_{1}\right)+d\left(x, x_{2}\right)+\cdots+d\left(x, x_{n}\right)}{n}=\alpha .
$$

