AoPS Community

VI Iberoamerican Interuniversitary Mathematics Competition - Costa Rica

www.artofproblemsolving.com/community/c305024
by Ozc

Problem 1 Let $g:[2013,2014] \rightarrow \mathbb{R}$ a function that satisfy the following two conditions:
i) $g(2013)=g(2014)=0$,
ii) for any $a, b \in[2013,2014]$ it hold that $g\left(\frac{a+b}{2}\right) \leq g(a)+g(b)$.

Prove that g has zeros in any open subinterval $(c, d) \subset[2013,2014]$.
Problem 2 Let n be an integer and p a prime greater than 2 . Show that:

$$
(p-1)^{n} n!\mid\left(p^{n}-1\right)\left(p^{n}-p\right)\left(p^{n}-p^{2}\right) \cdots\left(p^{n}-p^{n-1}\right) .
$$

Problem 3 Given $n \geq 2$, let \mathcal{A} be a family of subsets of the set $\{1,2, \ldots, n\}$ such that, for any $A_{1}, A_{2}, A_{3}, A_{4} \in$ \mathcal{A}, it holds that $\left|A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right| \leq n-2$.
Prove that $|\mathcal{A}| \leq 2^{n-2}$.
Problem 4 Let $\left\{a_{i}\right\}$ be a strictly increasing sequence of positive integers. Define the sequence $\left\{s_{k}\right\}$ as

$$
s_{k}=\sum_{i=1}^{k} \frac{1}{\left[a_{i}, a_{i+1}\right]},
$$

where $\left[a_{i}, a_{i+1}\right]$ is the least commun multiple of a_{i} and a_{i+1}.
Show that the sequence $\left\{s_{k}\right\}$ is convergent.
Problem 5 A analityc function $f: \mathbb{C} \rightarrow \mathbb{C}$ is call interesting if $f(z)$ is real along the parabola $\operatorname{Re}(z)=$ $(\operatorname{Im}(z))^{2}$.
a) Find an example of a non constant interesting function.
b) Show that every interesting function f satisfy that $f^{\prime}(-3 / 4)=0$.

Problem 6 a) Let $\left\{x_{n}\right\}$ be a sequence with $x_{n} \in[0,1]$ for any n. Prove that there exists $C>0$ such that for every positive integer r, there exists $m \geq 1$ and $n>m+r$ that satisfy $(n-m)\left|x_{n}-x_{m}\right| \leq C$. b) Prove that for every $C>0$, there exists a sequence $\left\{x_{n}\right\}$ with $x_{n} \in[0,1]$ for all n and an integer r such that, if $m \geq 1$ and $n>m+r$, then $(n-m)\left|x_{n}-x_{m}\right|>C$.

