

AoPS Community

VI Iberoamerican Interuniversitary Mathematics Competition - Costa Rica www.artofproblemsolving.com/community/c305024 by Ozc

Problem 1 Let $g : [2013, 2014] \rightarrow \mathbb{R}$ a function that satisfy the following two conditions:

i) g(2013) = g(2014) = 0, ii) for any $a, b \in [2013, 2014]$ it hold that $g\left(\frac{a+b}{2}\right) \le g(a) + g(b)$. Prove that g has zeros in any open subinterval $(c, d) \subset [2013, 2014]$.

Problem 2 Let *n* be an integer and *p* a prime greater than 2. Show that:

 $(p-1)^n n! | (p^n-1)(p^n-p)(p^n-p^2) \cdots (p^n-p^{n-1}).$

Problem 3 Given $n \ge 2$, let \mathcal{A} be a family of subsets of the set $\{1, 2, \dots, n\}$ such that, for any $A_1, A_2, A_3, A_4 \in \mathcal{A}$, it holds that $|A_1 \cup A_2 \cup A_3 \cup A_4| \le n-2$. Prove that $|\mathcal{A}| \le 2^{n-2}$.

Problem 4 Let $\{a_i\}$ be a strictly increasing sequence of positive integers. Define the sequence $\{s_k\}$ as

$$s_k = \sum_{i=1}^k \frac{1}{[a_i, a_{i+1}]}$$

where $[a_i, a_{i+1}]$ is the least commun multiple of a_i and a_{i+1} . Show that the sequence $\{s_k\}$ is convergent.

Problem 5 A analityc function $f : \mathbb{C} \to \mathbb{C}$ is call interesting if f(z) is real along the parabola $Re(z) = (Im(z))^2$.

a) Find an example of a non constant interesting function.

b) Show that every interesting function f satisfy that f'(-3/4) = 0.

Problem 6 a) Let $\{x_n\}$ be a sequence with $x_n \in [0, 1]$ for any n. Prove that there exists C > 0 such that for every positive integer r, there exists $m \ge 1$ and n > m+r that satisfy $(n-m)|x_n - x_m| \le C$. b) Prove that for every C > 0, there exists a sequence $\{x_n\}$ with $x_n \in [0, 1]$ for all n and an integer r such that, if $m \ge 1$ and n > m+r, then $(n-m)|x_n - x_m| > C$.

AoPS Online 🧔 AoPS Academy 🐼 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.