AoPS Community

VII Iberoamerican Interuniversitary Mathematics Competition - Mexico

www.artofproblemsolving.com/community/c305025
by Ozc

Problem 1 Find the real number a such that the integral

$$
\int_{a}^{a+8} e^{-x} e^{-x^{2}} d x
$$

attain its maximum.
Problem 2 Find all polynomials $P(x)$ with real coefficients that satisfy the identity

$$
P\left(x^{3}-2\right)=P(x)^{3}-2,
$$

for every real number x.
Problem 3 Consider the matrices

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)
$$

Let $k \geq 1$ an integer. Prove that for any nonzero $i_{1}, i_{2}, \ldots, i_{k-1}, j_{1}, j_{2}, \ldots, j_{k}$ and any integers i_{0}, i_{k} it holds that

$$
A^{i_{0}} B^{j_{1}} A^{i_{1}} B^{j_{2}} \cdots A^{i_{k-1}} B^{i_{k}} A^{i_{k}} \neq I .
$$

Problem 4 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ a continuos function and α a real number such that

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=\alpha .
$$

Prove that for any $r>0$, there exists $x, y \in \mathbb{R}$ such that $y-x=r$ and $f(x)=f(y)$.
Problem 5 There are n people seated on a circular table that have seats numerated from 1 to n clockwise. Let k be a fix integer with $2 \leq k \leq n$. The people can change their seats. There are two types of moves permitted:

1. Each person moves to the next seat clockwise.
2. Only the ones in seats 1 and k exchange their seats.

Determine, in function of n and k, the number of possible configurations of people in the table that can be attain by using a sequence of permitted moves.

Problem 6 Show that there exists a real $C>1$ that satisfy the following property: if $n>1$ and $a_{0}<$ $a_{1}<\cdots<a_{n}$ are positive integers such that $\frac{1}{a_{0}}, \frac{1}{a_{1}}, \ldots, \frac{1}{a_{n}}$ are in arithmetic progression, then $a_{0}>C^{n}$.

