AoPS Community

www.artofproblemsolving.com/community/c3054262
by StefanSebez

1 Prove that for all positive real numbers a, b the following inequality holds:

$$
\sqrt{\frac{a^{2}+b^{2}}{2}}+\frac{2 a b}{a+b} \geq \frac{a+b}{2}+\sqrt{a b}
$$

When does equality hold?
2 Let I be the incenter, A_{1} and B_{1} midpoints of sides $B C$ and $A C$ of a triangle $\triangle A B C$. Denote by M and N the midpoints of the arcs $A C$ and $B C$ of circumcircle of $\triangle A B C$ which do contain the other vertex of the triangle. If points M, I and N are collinear prove that:

$$
\angle A I B_{1}=\angle B I A_{1}=90^{\circ}
$$

3 Find all natural numbers n for which the following 5 conditions hold: (1) n is not divisible by any perfect square bigger than 1 . (2) n has exactly one prime divisor of the form $4 k+3, k \in \mathbb{N}_{0}$. (3) Denote by $S(n)$ the sum of digits of n and $d(n)$ as the number of positive divisors of n. Then we have that $S(n)+2=d(n)$. (4) $n+3$ is a perfect square. (5) n does not have a prime divisor which has 4 or more digits.

4 Initially in every cell of a 5×5 board is the number 0 . In one move you may take any cell of this board and add 1 to it and all of its adjacent cells (two cells are adjacent if they share an edge). After a finite number of moves, number n is written in all cells. Find all possible values of n.

