AoPS Community

Problems from 2022 Thailand Mathematical Olympiad
www.artofproblemsolving.com/community/c3064210
by Quidditch

- Day 1

1 Let $B C$ be a chord of a circle Γ and A be a point inside Γ such that $\angle B A C$ is acute. Outside $\triangle A B C$, construct two isosceles triangles $\triangle A C P$ and $\triangle A B R$ such that $\angle A C P$ and $\angle A B R$ are right angles. Let lines $B A$ and $C A$ meet Γ again at points E and F, respectively. Let lines $E P$ and $F R$ meet Γ again at points X and Y, respectively. Prove that $B X=C Y$.

2 Define a function $f: \mathbb{N} \times \mathbb{N} \rightarrow\{-1,1\}$ such that

$$
f(m, n)= \begin{cases}1 & \text { if } m, n \text { have the same parity, and } \\ -1 & \text { if } m, n \text { have different parity }\end{cases}
$$

for every positive integers m, n. Determine the minimum possible value of

$$
\sum_{1 \leq i<j \leq 2565} i j f\left(x_{i}, x_{j}\right)
$$

across all permutations $x_{1}, x_{2}, x_{3}, \ldots, x_{2565}$ of $1,2, \ldots, 2565$.
3 Let Ω be a circle in a plane. 2022 pink points and 2565 blue points are placed inside Ω such that no point has two colors and no two points are collinear with the center of Ω. Prove that there exists a sector of Ω such that the angle at the center is acute and the number of blue points inside the sector is greater than the number of pink points by exactly 100. (Note: such sector may contain no pink points.)

4 Find all positive integers n such that there exists a monic polynomial $P(x)$ of degree n with integers coefficients satisfying

$$
P(a) P(b) \neq P(c)
$$

for all integers a, b, c.
5 Determine all functions $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ that satisfies the equation

$$
f\left(\frac{x+y+z}{3}, \frac{a+b+c}{3}\right)=f(x, a) f(y, b) f(z, c)
$$

for any real numbers x, y, z, a, b, c such that $a z+b x+c y \neq a y+b z+c x$.

- Day 2

6 In an examination, there are 3600 students sitting in a 60×60 grid, where everyone is facing toward the top of the grid. After the exam, it is discovered that there are 901 students who got infected by COVID-19. Each infected student has a spreading region, which consists of students to the left, to the right, or in the front of them. Student in spreading region of at least two students are considered a close contact. Given that no infected student sat in the spreading region of other infected student, prove that there is at least one close contact.

7 Let $d \geq 2$ be a positive integer. Define the sequence a_{1}, a_{2}, \ldots by

$$
a_{1}=1 \text { and } a_{n+1}=a_{n}^{d}+1 \text { for all } n \geq 1 .
$$

Determine all pairs of positive integers (p, q) such that a_{p} divides a_{q}.
8 Determine all possible values of a_{1} for which there exists a sequence a_{1}, a_{2}, \ldots of rational numbers satisfying

$$
a_{n+1}^{2}-a_{n+1}=a_{n}
$$

for all positive integers n.
9 Let $P Q R S$ be a quadrilateral that has an incircle and $P Q \neq Q R$. Its incircle touches sides $P Q, Q R, R S$, and $S P$ at A, B, C, and D, respectively. Line $R P$ intersects lines $B A$ and $B C$ at T and M, respectively. Place point N on line $T B$ such that $N M$ bisects $\angle T M B$. Lines $C N$ and $T M$ intersect at K, and lines $B K$ and $C D$ intersect at H. Prove that $\angle N M H=90^{\circ}$.

10 For each positive integers u and n, say that u is a friend of n if and only if there exists a positive integer N that is a multiple of n and the sum of digits of N (in base 10) is equal to u. Determine all positive integers n that only finitely many positive integers are not a friend of n.

