

AoPS Community

2016 China Girls Math Olympiad

China Girls Math Olympiad 2016

www.artofproblemsolving.com/community/c307113 by buzzychaoz, sqing

Day 1

- 1 Let $n \ge 3$ be an integer. Put n^2 cards, each labelled $1, 2, ..., n^2$ respectively, in any order into n empty boxes such that there are exactly n cards in each box. One can perform the following operation: one first selects 2 boxes, takes out any 2 cards from each of the selected boxes, and then return the cards to the other selected box. Prove that, for any initial order of the n^2 cards in the boxes, one can perform the operation finitely many times such that the labelled numbers in each box are consecutive integers.
- **2** In $\triangle ABC$, BC = a, CA = b, AB = c, and Γ is its circumcircle. (1) Determine a necessary and sufficient condition on a, b and c if there exists a unique point $P(P \neq B, P \neq C)$ on the arc BC of Γ not passing through point A such that PA = PB + PC. (2) Let P be the unique point stated in (1). If AP bisects BC, prove that $\angle BAC < 60^{\circ}$.
- **3** Let *m* and *n* are relatively prime integers and m > 1, n > 1. Show that: There are positive integers a, b, c such that $m^a = 1 + n^b c$, and *n* and *c* are relatively prime.
- **4** Let *n* is a positive integers $a_1, a_2, \dots, a_n \in \{0, 1, \dots, n\}$. For the integer $j \ (1 \le j \le n)$, define b_j is the number of elements in the set $\{i|i \in \{1, \dots, n\}, a_i \ge j\}$. For example When n = 3, if $a_1 = 1, a_2 = 2, a_3 = 1$, then $b_1 = 3, b_2 = 1, b_3 = 0$. (1) Prove that

$$\sum_{i=1}^{n} (i+a_i)^2 \ge \sum_{i=1}^{n} (i+b_i)^2.$$

(2) Prove that

$$\sum_{i=1}^{n} (i+a_i)^k \ge \sum_{i=1}^{n} (i+b_i)^k,$$

for the integer $k \geq 3$.

Day 2

5 Define a sequence $\{a_n\}$ by

$$S_1 = 1, \ S_{n+1} = \frac{(2+S_n)^2}{4+S_n} (n = 1, \ 2, \ 3, \ \cdots).$$

AoPS Community

2016 China Girls Math Olympiad

Where S_n the sum of first n terms of sequence $\{a_n\}$. For any positive integer n ,prove that

$$a_n \ge \frac{4}{\sqrt{9n+7}}.$$

- **6** Find the greatest positive integer *m*, such that one of the 4 letters *C*, *G*, *M*, *O* can be placed in each cell of a table with *m* rows and 8 columns, and has the following property: For any two distinct rows in the table, there exists at most one column, such that the entries of these two rows in such a column are the same letter.
- 7 In acute triangle ABC, AB < AC, I is its incenter, D is the foot of perpendicular from I to BC, altitude AH meets BI, CI at P, Q respectively. Let O be the circumcenter of $\triangle IPQ$, extend AO to meet BC at L. Circumcircle of $\triangle AIL$ meets BC again at N. Prove that $\frac{BD}{CD} = \frac{BN}{CN}$.
- 8 Let \mathbb{Q} be the set of rational numbers, \mathbb{Z} be the set of integers. On the coordinate plane, given positive integer m, define

$$A_m = \left\{ (x, y) \mid x, y \in \mathbb{Q}, xy \neq 0, \frac{xy}{m} \in \mathbb{Z} \right\}.$$

For segment MN, define $f_m(MN)$ as the number of points on segment MN belonging to set A_m .

Find the smallest real number λ , such that for any line l on the coordinate plane, there exists a constant $\beta(l)$ related to l, satisfying: for any two points M, N on l,

$$f_{2016}(MN) \le \lambda f_{2015}(MN) + \beta(l)$$

Art of Problem Solving is an ACS WASC Accredited School.

2