AoPS Community

China Girls Math Olympiad 2016
www.artofproblemsolving.com/community/c307113
by buzzychaoz, sqing

Day 1

1 Let $n \geq 3$ be an integer. Put n^{2} cards, each labelled $1,2, \ldots, n^{2}$ respectively, in any order into n empty boxes such that there are exactly n cards in each box. One can perform the following operation: one first selects 2 boxes, takes out any 2 cards from each of the selected boxes, and then return the cards to the other selected box. Prove that, for any initial order of the n^{2} cards in the boxes, one can perform the operation finitely many times such that the labelled numbers in each box are consecutive integers.

2 In $\triangle A B C, B C=a, C A=b, A B=c$, and Γ is its circumcircle. (1) Determine a necessary and sufficient condition on a, b and c if there exists a unique point $P(P \neq B, P \neq C)$ on the arc $B C$ of Γ not passing through point A such that $P A=P B+P C$. (2) Let P be the unique point stated in (1). If $A P$ bisects $B C$, prove that $\angle B A C<60^{\circ}$.
$3 \quad$ Let m and n are relatively prime integers and $m>1, n>1$. Show that:There are positive integers a, b, c such that $m^{a}=1+n^{b} c$, and n and c are relatively prime.

4 Let n is a positive integers , $a_{1}, a_{2}, \cdots, a_{n} \in\{0,1, \cdots, n\}$. For the integer $j(1 \leq j \leq n)$, define b_{j} is the number of elements in the set $\left\{i \mid i \in\{1, \cdots, n\}, a_{i} \geq j\right\}$. For example When $n=3$, if $a_{1}=1, a_{2}=2, a_{3}=1$, then $b_{1}=3, b_{2}=1, b_{3}=0$. (1) Prove that

$$
\sum_{i=1}^{n}\left(i+a_{i}\right)^{2} \geq \sum_{i=1}^{n}\left(i+b_{i}\right)^{2}
$$

(2) Prove that

$$
\sum_{i=1}^{n}\left(i+a_{i}\right)^{k} \geq \sum_{i=1}^{n}\left(i+b_{i}\right)^{k}
$$

for the integer $k \geq 3$.

Day 2

5 Define a sequence $\left\{a_{n}\right\}$ by

$$
S_{1}=1, S_{n+1}=\frac{\left(2+S_{n}\right)^{2}}{4+S_{n}}(n=1,2,3, \cdots) .
$$

Where S_{n} the sum of first n terms of sequence $\left\{a_{n}\right\}$.
For any positive integer n, prove that

$$
a_{n} \geq \frac{4}{\sqrt{9 n+7}}
$$

6 Find the greatest positive integer m, such that one of the 4 letters C, G, M, O can be placed in each cell of a table with m rows and 8 columns, and has the following property: For any two distinct rows in the table, there exists at most one column, such that the entries of these two rows in such a column are the same letter.

7 In acute triangle $A B C, A B<A C, I$ is its incenter, D is the foot of perpendicular from I to $B C$, altitude $A H$ meets $B I, C I$ at P, Q respectively. Let O be the circumcenter of $\triangle I P Q$, extend $A O$ to meet $B C$ at L. Circumcircle of $\triangle A I L$ meets $B C$ again at N. Prove that $\frac{B D}{C D}=\frac{B N}{C N}$.
$8 \quad$ Let \mathbb{Q} be the set of rational numbers, \mathbb{Z} be the set of integers. On the coordinate plane, given positive integer m, define

$$
A_{m}=\left\{(x, y) \mid x, y \in \mathbb{Q}, x y \neq 0, \frac{x y}{m} \in \mathbb{Z}\right\} .
$$

For segment $M N$, define $f_{m}(M N)$ as the number of points on segment $M N$ belonging to set A_{m}.
Find the smallest real number λ, such that for any line l on the coordinate plane, there exists a constant $\beta(l)$ related to l, satisfying: for any two points M, N on l,

$$
f_{2016}(M N) \leq \lambda f_{2015}(M N)+\beta(l)
$$

