www.artofproblemsolving.com/community/c3073907
by gghx

Q1 For $\triangle A B C$ and its circumcircle ω, draw the tangents at B, C to ω meeting at D. Let the line $A D$ meet the circle with center D and radius $D B$ at E inside $\triangle A B C$. Let F be the point on the extension of $E B$ and G be the point on the segment $E C$ such that $\angle A F B=\angle A G E=\angle A$. Prove that the tangent at A to the circumcircle of $\triangle A F G$ is parallel to $B C$.

Proposed by 61plus
Q2 Prove that if the length and breadth of a rectangle are both odd integers, then there does not exist a point P inside the rectangle such that each of the distances from P to the 4 corners of the rectangle is an integer.

Q3 Find all functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$satisfying

$$
m!!+n!!\mid f(m)!!+f(n)!!
$$

for each $m, n \in \mathbb{Z}^{+}$, where $n!!=(n!)$! for all $n \in \mathbb{Z}^{+}$.
Proposed by DVDthe1st
Q4 Let $n, k, 1 \leq k \leq n$ be fixed integers. Alice has n cards in a row, where the card has position i has the label $i+k$ (or $i+k-n$ if $i+k>n$). Alice starts by colouring each card either red or blue. Afterwards, she is allowed to make several moves, where each move consists of choosing two cards of different colours and swapping them. Find the minimum number of moves she has to make (given that she chooses the colouring optimally) to put the cards in order (i.e. card i is at position i).

NOTE: edited from original phrasing, which was ambiguous.
Q5 Let $n \geq 2$ be a positive integer. For any integer a, let $P_{a}(x)$ denote the polynomial $x^{n}+a x$. Let p be a prime number and define the set S_{a} as the set of residues $\bmod p$ that $P_{a}(x)$ attains. That is,

$$
S_{a}=\left\{b \mid 0 \leq b \leq p-1, \text { and there is } c \text { such that } P_{a}(c) \equiv b \quad(\bmod p)\right\} .
$$

Show that the expression $\frac{1}{p-1} \sum_{a=1}^{p-1}\left|S_{a}\right|$ is an integer.
Proposed by fattypiggy 123

