AoPS Community

2022 Kosovo \& Albania Mathematical Olympiad

Joint Kosovo \& Albania Mathematical Olympiad for children in grades 7-9

www.artofproblemsolving.com/community/c3075829
by bsf714

- \quad Grades 7-8

1 Find all pairs of integers (m, n) such that

$$
m+n=3(m n+10) .
$$

2 Consider a 5×5 grid with 25 cells. What is the least number of cells that should be colored, such that every 2×3 or 3×2 rectangle in the grid has at least two colored cells?

3 Let $A B C D$ be a square and let M be the midpoint of $B C$. Let X and Y be points on the segments $A B$ and $C D$, respectively. Prove that $\angle X M Y=90^{\circ}$ if and only if $B X+C Y=X Y$.

Note: In the competition, students were only asked to prove the 'only if' direction.
4 Let A be the set of natural numbers n such that the distance of the real number $n \sqrt{2022}-\frac{1}{3}$ from the nearest integer is at most $\frac{1}{2022}$. Show that the equation

$$
20 x+21 y=22 z
$$

has no solutions over the set A.

- \quad Grade 9
- Let $a>0$. If the inequality $22<a x<222$ holds for precisely 10 positive integers x, find how many positive integers satisfy the inequality $222<a x<2022$?

Note: The first 8 problems of the competition are questions which the contestants are expected to solve quickly and only write the answer of. This problem turned out to be a lot more difficult than anticipated for an answer-only question.

1 If $\left(2^{x}-4^{x}\right)+\left(2^{-x}-4^{-x}\right)=3$, find the numerical value of the expression

$$
\left(8^{x}+3 \cdot 2^{x}\right)+\left(8^{-x}+3 \cdot 2^{-x}\right) .
$$

2 Let $A B C$ be an acute triangle. Let D be a point on the line parallel to $A C$ that passes through B, such that $\angle B D C=2 \angle B A C$ as well as such that $A B D C$ is a convex quadrilateral. Show that $B D+D C=A C$.

3 Is it possible to partition $\{1,2,3, \ldots, 28\}$ into two sets A and B such that both of the following conditions hold simultaneously:
(i) the number of odd integers in A is equal to the number of odd integers in B;
(ii) the difference between the sum of squares of the integers in A and the sum of squares of the integers in B is 16 ?

4 Consider $n>9$ lines on the plane such that no two lines are parallel. Show that there exist at least $n / 9$ lines such that the angle between any two of the lines is at most 20°.

