

AoPS Community

2022 Kosovo & Albania Mathematical Olympiad

Joint Kosovo & Albania Mathematical Olympiad for children in grades 7-9 www.artofproblemsolving.com/community/c3075829 by bsf714 Grades 7-8 1 Find all pairs of integers (m, n) such that m + n = 3(mn + 10).2 Consider a 5×5 grid with 25 cells. What is the least number of cells that should be colored, such that every 2×3 or 3×2 rectangle in the grid has at least two colored cells? 3 Let ABCD be a square and let M be the midpoint of BC. Let X and Y be points on the segments AB and CD, respectively. Prove that $\angle XMY = 90^{\circ}$ if and only if BX + CY = XY. Note: In the competition, students were only asked to prove the 'only if' direction. Let A be the set of natural numbers n such that the distance of the real number $n\sqrt{2022} - \frac{1}{3}$ 4 from the nearest integer is at most $\frac{1}{2022}$. Show that the equation 20x + 21y = 22zhas no solutions over the set A. Grade 9 Let a > 0. If the inequality 22 < ax < 222 holds for precisely 10 positive integers x, find how many positive integers satisfy the inequality 222 < ax < 2022? Note: The first 8 problems of the competition are questions which the contestants are expected to solve quickly and only write the answer of. This problem turned out to be a lot more difficult than anticipated for an answer-only question. If $(2^x - 4^x) + (2^{-x} - 4^{-x}) = 3$, find the numerical value of the expression 1 $(8^{x} + 3 \cdot 2^{x}) + (8^{-x} + 3 \cdot 2^{-x}).$ 2 Let ABC be an acute triangle. Let D be a point on the line parallel to AC that passes through B, such that $\angle BDC = 2 \angle BAC$ as well as such that ABDC is a convex quadrilateral. Show that BD + DC = AC.

AoPS Community

2022 Kosovo & Albania Mathematical Olympiad

3 Is it possible to partition $\{1, 2, 3, ..., 28\}$ into two sets *A* and *B* such that both of the following conditions hold simultaneously:

(i) the number of odd integers in A is equal to the number of odd integers in B;

(ii) the difference between the sum of squares of the integers in A and the sum of squares of the integers in B is 16?

4 Consider n > 9 lines on the plane such that no two lines are parallel. Show that there exist at least n/9 lines such that the angle between any two of the lines is at most 20° .

AoPS Online 🔯 AoPS Academy 🗿 AoPS & Cademy

Art of Problem Solving is an ACS WASC Accredited School.