AoPS Community

www.artofproblemsolving.com/community/c3076057
by dangerousliri, Lukaluce

1 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all real numbers x and y,

$$
f\left(x^{2}\right)+2 f(x y)=x f(x+y)+y f(x) .
$$

Proposed by Dorlir Ahmeti, Kosovo
2 Find all positive integers a, b, c such that $a b+1, b c+1$, and $c a+1$ are all equal to factorials of some positive integers.

Proposed by Nikola Velov, Macedonia
$3 \quad$ Let $A B C$ be a triangle and D point on side $B C$ such that $A D$ is angle bisector of angle $\angle B A C$. Let E be the intersection of the side $A B$ with circle ω_{1} which has diameter $C D$ and let F be the intersection of the side $A C$ with circle ω_{2} which has diameter $B D$. Suppose that there exist points $P \in \omega_{1}$ and $Q \in \omega_{2}$ such that E, P, Q and F are collinear and on this order. Prove that $A D, B Q$ and $C P$ are concurrent.

Proposed by Dorlir Ahmeti, Kosovo and Noah Walsh, U.S.A.
4 On a board, Ana writes a different integers, while Ben writes b different integers. Then, Ana adds each of her numbers with with each of Ben's numbers and she obtains c different integers. On the other hand, Ben substracts each of his numbers from each of Ana's numbers and he gets d different integers.
For each integer n, let $f(n)$ be the number of ways that n may be written as sum of one number of Ana and one number of Ben.
a) Show that there exist an integer n such that,

$$
f(n) \geq \frac{a b}{c} .
$$

b) Does there exist an integer n such that,

$$
f(n) \geq \frac{a b}{d} ?
$$

Proposed by Besfort Shala, Kosovo

