AoPS Community

Spain Mathematical Olympiad 2016

www.artofproblemsolving.com/community/c308833
by gavrilos, ESCHen99, Sumgato

- Day 1

1 Two real number sequences are guiven, one arithmetic $\left(a_{n}\right)_{n \in \mathbb{N}}$ and another geometric sequence $\left(g_{n}\right)_{n \in \mathbb{N}}$ none of them constant. Those sequences verifies $a_{1}=g_{1} \neq 0, a_{2}=g_{2}$ and $a_{10}=g_{3}$. Find with proof that, for every positive integer p, there is a positive integer m, such that $g_{p}=a_{m}$.

2 Given a positive prime number p. Prove that there exist a positive integer α such that $p \mid \alpha(\alpha-$ $1)+3$, if and only if there exist a positive integer β such that $p \mid \beta(\beta-1)+25$.

3 In the circumscircle of a triangle $A B C$, let A_{1} be the point diametrically opposed to the vertex A. Let A^{\prime} the intersection point of $A A^{\prime}$ and $B C$. The perpendicular to the line $A A^{\prime}$ from A^{\prime} meets the sides $A B$ and $A C$ at M and N, respectively. Prove that the points A, M, A_{1} and N lie on a circle which has the center on the height from A of the triangle $A B C$.

- Day 2

4 Let m be a positive integer and a and b be distinct positive integers strictly greater than m^{2} and strictly less than $m^{2}+m$. Find all integers d such that $m^{2}<d<m^{2}+m$ and d divides $a b$.

5 From all possible permutations from $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ from the set $\{1,2, . ., n\}, n \geq 1$, consider the sets that satisfies the $2\left(a_{1}+a_{2}+\ldots+a_{m}\right)$ is divisible by m, for every $m=1,2, \ldots, n$. Find the total number of permutations.

6 Let $n \geq 2$ an integer. Find the least value of γ such that for any positive real numbers $x_{1}, x_{2}, \ldots, x_{n}$ with $x_{1}+x_{2}+\ldots+x_{n}=1$ and any real $y_{1}+y_{2}+\ldots+y_{n}=1$ and $0 \leq y_{1}, y_{2}, \ldots, y_{n} \leq \frac{1}{2}$ the following inequality holds:

$$
x_{1} x_{2} \ldots x_{n} \leq \gamma\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right)
$$

