

AoPS Community

www.artofproblemsolving.com/community/c3089921 by rcorreaa

Problem 1 A pair (a, b) of positive integers is good if gcd(a, b) = 1 and for each pair of sets A, B of positive integers such that A, B are, respectively, complete residues system modulo a, b, there are $x \in A, y \in B$ such that gcd(x + y, ab) = 1. For each pair of positive integers a, k, let f(N) the number of $b \le N$ such b has k distinct prime factors and (a, b) is good. Prove that

$$\liminf_{n \to \infty} f(n) / \frac{n}{(\log n)^k} \ge e^k$$

- **Problem 2** Let ABC be a triangle and Ω its circumcircle. Let the internal angle bisectors of $\angle BAC$, $\angle ABC$, $\angle BCA$ intersect BC, CA, AB on D, E, F, respectively. The perpedincular line to EF through D intersects EF on X and AD intersects EF on Z. The circle internally tangent to Ω and tangent to AB, AC touches Ω on Y. Prove that (XYZ) is tangent to Ω .
- **Problem 3** positive real C is n vengeful if it is possible to color the cells of an $n \times n$ chessboard such that:
 - i) There is an equal number of cells of each color.
 - ii) In each row or column, at least Cn cells have the same color.
 - a) Show that $\frac{3}{4}$ is n vengeful for infinitely many values of n.
 - b) Show that it does not exist *n* such that $\frac{4}{5}$ is n vengeful.

Problem 4 Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive integers such that $a_1 = 1$. For each $n \ge 1$, a_{n+1} is the smallest positive integer, distinct from $a_1, a_2, ..., a_n$, such that $gcd(a_{n+1}a_n + 1, a_i) = 1$ for each i = 1, 2, ..., n. Prove that every positive integer appears in $\{a_n\}_{n=1}^{\infty}$.

Problem 5 Prove that there exists a positive integer $x < 5^{2022}$ such that

$$\{\varphi\sqrt[3]{x}\} < \varphi^{-2022}.$$

🐼 AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

© 2022 AoPS Incorporated 1

Art of Problem Solving is an ACS WASC Accredited School.