AoPS Community

Peru IMO TST 2021

www.artofproblemsolving.com/community/c3093127
by gnoka, YII.I.

Day1

P1 For any positive integer n, we define $S(n)$ to be the sum of its digits in the decimal representation. Prove that for any positive integer m, there exists a positive integer n such that $S(n)-S\left(n^{2}\right)>m$.

P2 In an acute triangle $A B C$, its inscribed circle touches the sides $A B, B C$ at the points C_{1}, A_{1} respectively. Let M be the midpoint of the side $A C, N$ be the midpoint of the arc $A B C$ on the circumcircle of triangle $A B C$, and P be the projection of M on the segment $A_{1} C_{1}$.

Prove that the points P, N and the incenter I of the triangle $A B C$ lie on the same line.
P3 For any positive integer n, we define

$$
S_{n}=\sum_{k=1}^{n} \frac{2^{k}}{k^{2}}
$$

Prove that there are no polynomials P, Q with real coefficients such that for any positive integer n, we have $\frac{S_{n+1}}{S_{n}}=\frac{P(n)}{Q(n)}$.

P4 2020 IMOSL C1

Day2

P1 Find all positive integers m for which there exist three positive integers a, b, c such that $a b c m=$ $1+a^{2}+b^{2}+c^{2}$.

P2 2020 IMOSL C2

P3 Suppose the function $f:[1,+\infty) \rightarrow[1,+\infty)$ satisfies the following two conditions:
(i) $f(f(x))=x^{2}$ for any $x \geq 1$;
(ii) $f(x) \leq x^{2}+2021 x$ for any $x \geq 1$.

1. Prove that $x<f(x)<x^{2}$ for any $x \geq 1$.
2. Prove that there exists a function f satisfies the above two conditions and the following one:
(iii) There are no real constants c and A, such that $0<c<1$, and $\frac{f(x)}{x^{2}}<c$ for any $x>A$.

Day 3

P1 Suppose positive real numers x, y, z, w satisfy $\left(x^{3}+y^{3}\right)^{4}=z^{3}+w^{3}$. Prove that

$$
x^{4} z+y^{4} w \geq z w
$$

P2 For any positive integers a, b, c, n, we define

$$
D_{n}(a, b, c)=\operatorname{gcd}\left(a+b+c, a^{2}+b^{2}+c^{2}, a^{n}+b^{n}+c^{n}\right) .
$$

1. Prove that if n is a positive integer not divisible by 3 , then for any positive integer k, there exist three integers a, b, c such that $\operatorname{gcd}(a, b, c)=1$, and $D_{n}(a, b, c)>k$.
2. For any positive integer n divisible by 3 , find all values of $D_{n}(a, b, c)$, where a, b, c are three positive integers such that $\operatorname{gcd}(a, b, c)=1$.

P3 2020 IMOSL G5

