Art of Problem Solving

IMC 2022

www.artofproblemsolving.com/community/c3096331
by Tintarn, Assassino9931

- \quad Day 1 (August 3)

1 Let $f:[0,1] \rightarrow(0, \infty)$ be an integrable function such that $f(x) f(1-x)=1$ for all $x \in[0,1]$. Prove that $\int_{0}^{1} f(x) d x \geq 1$.

2 For a positive integer n determine all $n \times n$ real matrices A which have only real eigenvalues and such that there exists an integer $k \geq n$ with $A+A^{k}=A^{T}$.

3 Let p be a prime number. A flea is staying at point 0 of the real line. At each minute, the flea has three possibilities: to stay at its position, or to move by 1 to the left or to the right. After $p-1$ minutes, it wants to be at 0 again. Denote by $f(p)$ the number of its strategies to do this
(for example, $f(3)=3$: it may either stay at 0 for the entire time, or go to the left and then to the right, or go to the right and then to the left). Find $f(p)$ modulo p.
$4 \quad$ Let $n>3$ be an integer. Let Ω be the set of all triples of distinct elements of $\{1,2, \ldots, n\}$. Let m denote the minimal number of colours which suffice to colour Ω so that whenever $1 \leq a<b<$ $c<d \leq n$, the triples $\{a, b, c\}$ and $\{b, c, d\}$ have different colours. Prove that $\frac{1}{100} \log \log n \leq m \leq$ $100 \log \log n$.

- \quad Day 2 (August 4)

5 We colour all the sides and diagonals of a regular polygon P with 43 vertices either red or blue in such a way that every vertex is an endpoint of 20 red segments and 22 blue segments.
A triangle formed by vertices of P is called monochromatic if all of its sides have the same colour.
Suppose that there are 2022 blue monochromatic triangles. How many red monochromatic triangles
are there?
6 Let $p \geq 3$ be a prime number. Prove that there is a permutation $\left(x_{1}, \ldots, x_{p-1}\right)$ of $(1,2, \ldots, p-1)$ such that $x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{p-2} x_{p-1} \equiv 2(\bmod p)$.

7 Let A_{1}, \ldots, A_{k} be $n \times n$ idempotent complex matrices such that $A_{i} A_{j}=-A_{i} A_{j}$ for all $1 \leq i<$ $j \leq k$. Prove that at least one of the matrices has rank not exceeding $\frac{n}{k}$.

8 Let $n, k \geq 3$ be integers, and let S be a circle. Let n blue points and k red points be chosen uniformly and independently at random on the circle S. Denote by F the intersection of the convex hull of the red points and the convex hull of the blue points. Let m be the number of vertices
of the convex polygon F (in particular, $m=0$ when F is empty). Find the expected value of m.

