

AoPS Community

2022 China Girls Math Olympiad

China Girls Math Olympiad 2022

www.artofproblemsolving.com/community/c3101366 by Tintarn, MathLover_ZJ, David-Vieta, Photaesthesia

-	Day 1
1	Consider all the real sequences x_0, x_1, \dots, x_{100} satisfying the following two requirements: (1) $x_0 = 0$; (2)For any integer $i, 1 \le i \le 100$,we have $1 \le x_i - x_{i-1} \le 2$. Find the greatest positive integer $k \le 100$,so that for any sequence x_0, x_1, \dots, x_{100} like this,we have
	$x_k + x_{k+1} + \dots + x_{100} \ge x_0 + x_1 + \dots + x_{k-1}.$
2	Let <i>n</i> be a positive integer. There are $3n$ women's volleyball teams in the tournament, with no more than one match between every two teams (there are no ties in volleyball). We know that there are $3n^2$ games played in this tournament. Proof: There exists a team with at least $\frac{n}{4}$ win and $\frac{n}{4}$ loss
3	In triangle ABC , $AB > AC$, I is the incenter, AM is the midline. The line crosses I and is perpendicular to BC intersect AM at point L , and the symmetry of I with respect to point A is J Prove that: $\angle ABJ = \angle LBI$.
4	Given a prime number $p \ge 5$. Find the number of distinct remainders modulus p of the product of three consecutive positive integers.
-	Day 2
5	Two points <i>K</i> and <i>L</i> are chosen inside triangle <i>ABC</i> and a point <i>D</i> is chosen on the side <i>AB</i> . Suppose that <i>B</i> , <i>K</i> , <i>L</i> , <i>C</i> are concyclic, $\angle AKD = \angle BCK$ and $\angle ALD = \angle BCL$. Prove that $AK = AL$.
6	Find all integers <i>n</i> satisfying the following property. There exist nonempty finite integer sets <i>A</i> and <i>B</i> such that for any integer <i>m</i> , exactly one of these three statements below is true: (a) There is $a \in A$ such that $m \equiv a \pmod{n}$, (b) There is $b \in B$ such that $m \equiv b \pmod{n}$, and (c) There are $a \in A$ and $b \in B$ such that $m \equiv a + b \pmod{n}$.
7	Let $n \ge 3$ be integer. Given convex n -polygon \mathcal{P} . A 3-coloring of the vertices of \mathcal{P} is called <i>nice</i> such that every interior point of \mathcal{P} is inside or on the bound of a triangle formed by polygon

AoPS Community

2022 China Girls Math Olympiad

vertices with pairwise distinct colors. Determine the number of different nice colorings. (Two colorings are different as long as they differ at some vertices.)

8 Let x_1, x_2, \ldots, x_{11} be nonnegative reals such that their sum is 1. For $i = 1, 2, \ldots, 11$, let

$$y_i = \begin{cases} x_i + x_{i+1}, & i \text{ odd}, \\ x_i + x_{i+1} + x_{i+2}, & i \text{ even}, \end{cases}$$

where $x_{12} = x_1$. And let $F(x_1, x_2, ..., x_{11}) = y_1 y_2 ... y_{11}$. Prove that $x_6 < x_8$ when F achieves its maximum.

