AoPS Community

China Girls Math Olympiad 2022
www.artofproblemsolving.com/community/c3101366
by Tintarn, MathLover_ZJ, David-Vieta, Photaesthesia

- Day 1

1 Consider all the real sequences $x_{0}, x_{1}, \cdots, x_{100}$ satisfying the following two requirements:
(1) $x_{0}=0$;
(2)For any integer $i, 1 \leq i \leq 100$, we have $1 \leq x_{i}-x_{i-1} \leq 2$.

Find the greatest positive integer $k \leq 100$,so that for any sequence $x_{0}, x_{1}, \cdots, x_{100}$ like this, we have

$$
x_{k}+x_{k+1}+\cdots+x_{100} \geq x_{0}+x_{1}+\cdots+x_{k-1} .
$$

2 Let n be a positive integer. There are $3 n$ women's volleyball teams in the tournament, with no more than one match between every two teams (there are no ties in volleyball). We know that there are $3 n^{2}$ games played in this tournament.
Proof: There exists a team with at least $\frac{n}{4}$ win and $\frac{n}{4}$ loss
3 In triangle $A B C, A B>A C, I$ is the incenter, $A M$ is the midline. The line crosses I and is perpendicular to $B C$ intersect $A M$ at point L, and the symmetry of I with respect to point A is J Prove that: $\angle A B J=\angle L B I$.
$4 \quad$ Given a prime number $p \geq 5$.
Find the number of distinct remainders modulus p of the product of three consecutive positive integers.

- Day 2

$5 \quad$ Two points K and L are chosen inside triangle $A B C$ and a point D is chosen on the side $A B$. Suppose that B, K, L, C are concyclic, $\angle A K D=\angle B C K$ and $\angle A L D=\angle B C L$. Prove that $A K=A L$.

6 Find all integers n satisfying the following property. There exist nonempty finite integer sets A and B such that for any integer m, exactly one of these three statements below is true:
(a) There is $a \in A$ such that $m \equiv a(\bmod n)$,
(b) There is $b \in B$ such that $m \equiv b(\bmod n)$, and
(c) There are $a \in A$ and $b \in B$ such that $m \equiv a+b(\bmod n)$.

7 Let $n \geqslant 3$ be integer. Given convex n-polygon \mathcal{P}. A 3 -coloring of the vertices of \mathcal{P} is called nice such that every interior point of \mathcal{P} is inside or on the bound of a triangle formed by polygon
vertices with pairwise distinct colors. Determine the number of different nice colorings.
(Two colorings are different as long as they differ at some vertices.)
8 Let $x_{1}, x_{2}, \ldots, x_{11}$ be nonnegative reals such that their sum is 1 . For $i=1,2, \ldots, 11$, let

$$
y_{i}= \begin{cases}x_{i}+x_{i+1}, & i \text { odd } \\ x_{i}+x_{i+1}+x_{i+2}, & i \text { even }\end{cases}
$$

where $x_{12}=x_{1}$. And let $F\left(x_{1}, x_{2}, \ldots, x_{11}\right)=y_{1} y_{2} \ldots y_{11}$.
Prove that $x_{6}<x_{8}$ when F achieves its maximum.

