AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A, 1955

www.artofproblemsolving.com/community/c3103166
by byk7

1 Consider a trapezoid $A B C D, A B \| C D, A B>C D$. Let us denote intersections of lines as follows: $E=A C \cap B D, F=A D \cap B C$. Let $G H$ be a line such that $G \in A D, H \in B C, E \in$ $G H, G H \| A B$. Moreover, denote K, L midpoints of the bases $A B, C D$ respectively. Show that (a) the points K, L lie on the line $E F$,
(b) lines $A C, K H$ and $B D, K G$ are not parallel (denote $M=A C \cap K H, N=B D \cap K G$),
(c) the points F, M, N are collinear.

2 Let $\mathrm{S}_{1}, \mathrm{~S}_{2}$ be concentric spheres with radii a, b respectively, where $a<b$. Denote $A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ a square cuboid ($A B C D, A^{\prime} B^{\prime} C^{\prime} D$ are the squares and $A A^{\prime}\left\|B B^{\prime}\right\| C C^{\prime} \| D D^{\prime}$) such that $A, B, C, D \in \mathrm{~S}_{2}$ and the plane $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is tangent to S_{1}. Finally assume that

$$
\frac{A B}{A A^{\prime}}=\frac{a}{b}
$$

Compute the lengths $A B, A A^{\prime}$. How many of such cuboids exist (up to a congruence)?
3 In the complex plane consider the unit circle with the origin as its center. Furthermore, consider inscribed regular 17-gon with one of its vertices being $1+0 i$. How many of its vertices lie in the (open) unit disc centered in $\sqrt{3 / 2}(1+i)$?

4 Given that a, b, c are distinct real numbers, show that the equation

$$
\frac{1}{x-a}+\frac{1}{x-b}+\frac{1}{x-c}=0
$$

has a real root.

