Czech And Slovak Mathematical Olympiad, Round III, Category A, 1956

www.artofproblemsolving.com/community/c3105182
by byk7

1 Find all $x, y \in\left(0, \frac{\pi}{2}\right)$ such that

$$
\begin{aligned}
& \frac{\cos x}{\cos y}=2 \cos ^{2} y \\
& \frac{\sin x}{\sin y}=2 \sin ^{2} y
\end{aligned}
$$

2 In a given plane ϱ consider a convex quadrilateral $A B C D$ and denote $E=A C \cap B D$. Moreover, consider a point $V \notin \varrho$. On rays $V A, V B, V C, V D$ find points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ respectively such that $E, A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ are coplanar and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a parallelogram. Discuss conditions of solvability.

3 Find all real pairs x, y such that

$$
\begin{aligned}
x-|y+1| & =1 \\
x^{2}+y & =10 .
\end{aligned}
$$

$4 \quad$ Let a semicircle $A B$ be given and let X be an inner point of the arc. Consider a point Y on ray $X A$ such that $X Y=X B$. Find the locus of all points Y when X moves on the arc $A B$ (excluding the endpoints).

