AoPS Community

SMT + RMT Geometry Rounds 2001-11

geometry Rounds from Stanford and Rice Math Tournament, many years they shared problems ($\mathrm{R}=\mathrm{Rice}$, for different problems)

www.artofproblemsolving.com/community/c3125815
by parmenides51, tc1729, Mrdavid445
2001.1 Find the coordinates of the points of intersection of the graphs of the equations $y=|2 x|-2$ and $y=-|2 x|+2$.
2001.2 Jacques is building an igloo for his dog. The igloo's inside and outside are both perfectly hemispherical. The interior height at the center is 2 feet. The igloo has no door yet and contains $\frac{254}{2187} \pi$ cubic yards of hand-packed snow. What is the circumference of the igloo at its base in feet?
2001.3 Find the area of the convex quadrilateral whose vertices are $(0,0),(4,5),(9,21),(-3,7)$.
2001.4 E is a point in the interior of rectangle $A B C D . A B=6$, triangle $A B E$ has area 6 , and triangle $C D E$ has area 12. Find $(E A)^{2}-(E B)^{2}+(E C)^{2}-(E D)^{2}$.
2001.5 Two identical cones, each 2 inches in height, are held one directly above another with the pointed end facing down. The upper cone is completely filled with water. A small hole is punctured in the bottom of the upper cone so that the water trickles down into the bottom cone. When the water reaches a depth of 1 inch in the bottom cone, what is its depth in the upper cone?
2001.6 Find the radius of a circle inscribed in the triangle determined by the lines $4 x+3 y=24,56 x-$ $33 y=-264$, and $3 x-4 y=18$.
2001.7 In the figure, $A B$ is tangent at A to the circle with center O, point D is interior to the circle, and $D B$ intersects the circle at C. If $B C=D C=3, O D=2$ and $A B=6$, then find the radius of the circle. https://cdn.artofproblemsolving.com/attachments/2/2/4275723bedf7569320bac52fc56270bb34bfs png
2001.8 Let S be the solid tetrahedron with boundary points $(0,0,0),(2,4,0),(5,1,0),(3,2,10)$. Let $z_{1}=$ $\max \left\{q \left\lvert\,\left(\frac{12}{5}, \frac{23}{10}, q\right) \in S\right.\right\}$ and let $z_{2}=\max \left\{r \left\lvert\,\left(\frac{9}{2}, \frac{5}{4}, r\right) \in S\right.\right\}$. Find $z_{1}-z_{2}$.
2001.9 Circles A and B are tangent and have radii 1 and 2 , respectively. A tangent to circle A from the point B intersects circle A at C. D is chosen on circle B so that $A C$ is parallel to $B D$ and the two segments $B C$ and $A D$ do not intersect. Segment $A D$ intersects circle A at E. The line through B and E intersects circle A through another point F. Find $E F$.
2001.10 E is a point inside square $A B C D$ such that $\angle E C D=\angle E D C=15^{\circ}$. Find $\angle A E B$.

AoPS Community

SMT + RMT Geometry Rounds 2001-11

2002.1 In the figure below, what is the length of x ?
https://cdn.artofproblemsolving.com/attachments/7/7/655ad482e57c1231d21f0c4813ba8ddcfa8d png
2002.2 Upon cutting a certain rectangle in half, you obtain two rectangles that are scaled down versions of the original. What is the ratio of the longer side length to the shorter side length?
2002.3 An equilateral triangle has sides 1 inch long. An ant walks around the triangle maintaining a distance of 1 inch from the triangle at all times. How far does the ant walk?
2002.4 Given that the circles below each have radius 1 and are pairwise tangent, what is the area of the shaded region? https://cdn.artofproblemsolving.com/attachments/6/6/4d813e0d6fd3d30f0e619e81ebedb2499c36! png
2002.5 A lattice point is a point on the coordinate plane with integer values for x and y. How many lattice points lie on a circle centered at the origin with radius 25 ?
2002.6 A kite is a quadrilateral with sides of length a, a, b, and b, where the sides of length a are adjacent, as are the sides of length b. If such a kite can be inscribed in a circle, then what is its area?
2002.7 Consider a regular n-gon with side length s. What is the ratio of the area to the square of the perimeter in terms of n and s ? (expressed in fraction form)
2002.8 Four regular triangular pyramids are in a line. The first three have side lengths of 3,4 , and 5 , and the volume of the last pyramid is the sum of the volumes of the first three. What is the side length of the last pyramid?
2002.9 A ladder of height h leans against a wall. It starts out flat against the wall, and then the base slides out along the ground until the ladder lies flat. The ladder touches the wall throughout this motion. What is the area underneath the path traced by the midpoint of the ladder?
2002.10 In the diagrams below, each circle is inscribed in the surrounding square, and each square is inscribed in the surrounding circle. Suppose the pattern continues on to infinity. If the outermost square has side length 1 , what will the area of the shaded region be? https://cdn.artofproblemsolving.com/attachments/b/f/f9c82a67b27ba5010f5fd7efdfaff3249045: png
2003.1 $A B C D$ is a square with sides of length 1 . Suppose that a point E is placed somewhere on the edge $C D$. Let M be the maximum possible area of $\triangle A B E$, and let m be the minimum possible area of $\triangle A B E$. What is m / M ?

AoPS Community

SMT + RMT Geometry Rounds 2001-11

2003.2 Points A, B and C are such so that $A C$ and $B C$ define unique lines parallel to each other. If $A=(1,2)$ and $B=(5,6)$, and $A C=3 B C$, then what are the possible locations for C ?
2003.3 In the diagram below, $\overline{B C} \perp \overline{A D}, A C=6, C D=\frac{27}{2}$ and $m \angle B A C=m \angle C B D$. Find the length of $B D$.
https://cdn.artofproblemsolving.com/attachments/7/4/96bf0cb78f9a5047a4fd258b736dba59bdaf(png
2003.4 Patty and Selma are racing through a park. The park has two concentric circular paths joined by two radial paths, one of which hits the outer circle at the point where they enter the park. The exit is at the intersection of the other radial path and the outer circle. Patty follows the radial path to the inner circle, walks around the short way to the other radial path and down it to the exit. Selma just walks the short way around the outer circle to the exit. They move at the same rate and meet up at the exit at the same time. What is the smaller angle made by the two radial paths?
2003.5 Circle O is inscribed in $\triangle A B C$ and has radius $1 . \triangle A B C$ is isosceles with $A C=B C$. Suppose that $A B=2 \sqrt{3}$. Find the area of the shaded region.
https://cdn.artofproblemsolving.com/attachments/d/4/f76f7af607f7be9db0899c4aa8a72d4952aa png
2003.6 In trapezoid $A B C D$ with $A B \| C D, A B=20, C D=3, \angle A B C=32^{\circ}$ and $\angle B A D=58^{\circ}$. Compute the distance from the midpoint of $A B$ to the midpoint of $C D$.
2003.7 Two spherical balls lie on the ground touching. If one ball has a radius of 8 inches and the point of contact is 10 inches above the ground, what is the radius of the other ball?
2003.8 In circle $O, O A \perp O B$ and $O B \perp C D$. $C D$ has length $\sqrt{3}$ and $\operatorname{arc} A C$ has length 6. $\angle A O C=$ 120°. Find $D B$.
https://cdn.artofproblemsolving.com/attachments/d/d/3981be2c382fb0343a62218e72dc14d779f06 png
2003.9 A circular pizza of diameter 16 is cut so that two perpendicular diameters are each divided into 4 equal lengths. Find the area of the shaded corner piece.
https://cdn.artofproblemsolving.com/attachments/a/2/77fe364ff22c34af99f18d50620589ad9e9e? png
2003.10 Let the area of the first figure below, the solid equilateral triangle, be 1 . Then suppose that smaller equilateral triangles are successively removed step by step in the manner depicted below. What is the perimeter of the shaded region of the nth figure? https://cdn.artofproblemsolving.com/attachments/9/5/2a5a10b8aece770776220b30a3e63b05d61a png

AoPS Community

SMT + RMT Geometry Rounds 2001-11

2003.R11 Consider 3 pairwise tangent circles with centers A, B, C. Given that $B C=1, m \angle A=45^{\circ}$, $m \angle B=60^{\circ}, m \angle C=75^{\circ}$, what is the area of $\triangle A B C$ that is not inside of any of the three circles?
2004.1 In the diagram below, the outer circle has radius 3 , and the inner circle has radius 2 . What is the area of shaded region?
https://cdn.artofproblemsolving.com/attachments/9/1/83314a8220381f48ec1718991e64af93e31ec png
2004.2 A parallelogram has 3 of its vertices at (1,2), (3, 8), and (4, 1). Compute the sum of the possible x -coordinates for the 4th vertex.
2004.3 $A C$ is 2004. $C D$ bisects angle C. If the perimeter of $A B C$ is 6012 , find $(A C \times B C) /(A D \times B D)$. https://cdn.artofproblemsolving.com/attachments/8/3/5e5db364214eb9bea060d16e924d0c03976e1 png
2004.4 P is inside rectangle $A B C D . P A=2, P B=3$, and $P C=10$. Find $P D$.
2004.5 Find the area of the region of the $x y$-plane defined by the inequality $|x|+|y|+|x+y| \leq 1$.
2004.6 We inscribe a square in a circle of radius 1 and shade the region between them. Then we incribe another circle in the square and another square in the new circle and shade the region between the new circle and square. After we have repeated this process infinitely many times, what is the area of the shaded region?
https://cdn.artofproblemsolving.com/attachments/4/6/895c108d532a3ad97470176a66736bbdef53s png
2004.7 Yet another trapezoid $A B C D$ has $A D$ parallel to $B C$. $A C$ and $B D$ intersect at P. If $[A D P] /[B C P]=$ $1 / 2$, find $[A D P] /[A B C D]$.
(Here the notation $\left[P_{1} \ldots P_{n}\right]$ denotes the area of the polygon $P_{1} \ldots P_{n}$.)
2004.8 A triangle has side lengths 18,24 , and 30 . Find the area of the triangle whose vertices are the incenter, circumcenter, and centroid of the original triangle.
2004.9 Given is a regular tetrahedron of volume 1 . We obtain a second regular tetrahedron by reflecting the given one through its center. What is the volume of their intersection?
2004.10 Right triangle $X Y Z$ has right angle at Y and $X Y=228, Y Z=2004$. Angle Y is trisected, and the angle trisectors intersect $X Z$ at P and Q so that X, P, Q, Z lie on $X Z$ in that order. Find the value of $(P Y+Y Z)(Q Y+X Y)$.
2005.1 A dog is tied via a 30 ft . leash to one corner of a 10 ft . by 20 ft . dog pen. Given that the dog is initially on the outside of the pen and that neither he (nor his leash) can cross the pen's fence,

AoPS Community

SMT + RMT Geometry Rounds 2001-11

what area of land does he have to roam in?
2005.2 Find the area of the shaded region:https://cdn.artof problemsolving.com/attachments/ a/a/61608242e7447a2fa3663cba2f61f4a310d08c.png
2005.3 An infinite series of similar right triangles converges to point C. If $A E=16$, and $E D=8$, what is the sum of all the vertical segiments $(A E+B D+\ldots)$?
https://cdn.artofproblemsolving.com/attachments/a/9/27f13556933f5c04d85ca71eb47f4bb457cfe png
2005.4 Find the center of the circle of radius 1 centered on the y-axis that is tangent to the parabola $y=x^{2}$ in two places.
2005.5 A regular hexagon is inscribed in a circle with radius r. Another regular hexagon is formed with 2 vertices on an edge of the first hexagon and 2 vertices on the circle as shown below. Find the ratio of the area of the smaller hexagon to the area of the larger hexagon. https://cdn.artofproblemsolving.com/attachments/c/d/239e036f15b10247f1597c563928273bc12a png
2005.6 In circle O, chords $A B$ and $A C$ are drawn so that $A B=A C$. Chord $M N$ is drawn intersecting $A B$ and $A C$ at points R and S, respectively. Given that $A R=S C=17$ and $R B=A S=13$, what is the maximum value of $|M R-N S|$?
2005.7 Suppose $\triangle A B C$ is an equilateral triangle with area 1. Points Q and P are on $A B$ and points R and S are on $A C$ with $Q R, P S$ and $B C$ all parallel to each other. Also, $\overline{Q R}<\overline{P S}$. Points P^{\prime} and S^{\prime} are chosen on $B C$ so that $P P^{\prime}$ and $S S^{\prime}$ are each perpendicular to $B C$. Likewise, Q^{\prime} and R^{\prime} are chosen on $P S$ so that $Q Q^{\prime}$ and $R R^{\prime}$ are perpendicular to $P S$. What is the maximum possible area enclosed by the union of the two rectangles $P P^{\prime} S^{\prime} S$ and $Q Q^{\prime} R^{\prime} R$?
2005.8 A unit lattice square in the plane is a square of side 1 whose vertices have integer coordinates. Given that $(20.05)^{2} \cdot \pi \sim 1260$. Let N be the number of lattice squares that are entirely contained in a circle of radius 20.05 centered at the origin. Find $\left\lfloor\frac{N}{10}\right\rfloor$, where $\lfloor x\rfloor$ is the greatest integer less than or equal to x.
(Hint: A very good approximation for area in the plane of a smooth figure is given by $I+\frac{E}{2}$ where I is the number of unit lattice squares contained in the figure and E is the number intersected by the boundary)
2005.9 For each θ created by line $O A$ and the x-axis, point X is the point (-2θ) from $\overrightarrow{A B}$, where $O A=6$, and $A X=3$. Find the area enclosed by X as A takes each point along the unit circle.
2005.10 An internal diagonal of a rectangular prism connects 2 vertices and does not lie entirely in one face. Let P be a rectangular prism with volume 1, and let I be one of its internal diagonals.

AoPS Community

SMT + RMT Geometry Rounds 2001-11

Suppose C is a vertex of the prism that is not one of the vertices of ℓ. A point K is chosen on ℓ, and a new prism p^{\prime} is formed such that $\overline{C K}$ is an internal diagonal of p^{\prime}, and the faces of p^{\prime} are parallel to those of p. What is the maximum volume of p^{\prime} ?
2006.1 Given a cube, determine the ratio of the volume of the octahedron formed by connecting the centers of each face of the cube to the volume of the cube
2006.2 Given square $A B C D$ of side length 1 , with E on $\overline{C D}$ and F in the interior of the square so that $\overline{E F} \perp \overline{D C}$ and $\overline{A F} \cong \overline{B F} \cong \overline{E F}$, find the area of the quadrilateral $A D E F$. https://cdn.artofproblemsolving.com/attachments/3/2/a50ac80bbe4c97cc116236b3c071622fab01s png
2006.3 Circle γ is centered at $(0,3)$ with radius 1 . Circle δ is externally tangent to circle γ and tangent to the x-axis. Find an equation, solved for y if possible, for the locus of possible centers (x, y) of circle δ.
2006.4 The distance $A B$ is ℓ. Find the area of the locus of points X such that $15^{\circ} \leq \angle A X B \leq 30^{\circ}$ and X is on the same side of line $A B$ as a given point C.
2006.5 Let S denote a set of points (x, y, z). We define the shadow of S to be the set of points (x, y) for which there exists a real number z such that (x, y, z) is in S. For example, the shadow of a sphere with radius r centered on the z axis is a circle in the $x y$ plane centered at the origin with radius r. Suppose a cube has a shadow consisting of a regular hexagon witih area $147 \sqrt{3}$. What is the side length of the cube?
2006.6 A circle of radius R is placed tangent to two perpendicular lines. Another circle is placed tangent to the same two lines and the first circle. In terms of R, what is the radius of a third circle that is tangent to one line and tangent to both other circles
2006.7 A certain 2^{\prime} by 1^{\prime} pool table has pockets, denoted $[A, \ldots, F]$ as shown. A pool player strikes a ball at point $x, \frac{1}{4}$ of the way up side $\overline{A C}$, aiming for a point 1.6^{\prime} up the opposite side of the table. He makes his mark, and the ball ricochets around the edges of the table until it finally lands in one of the pockets. How many times does it ricochet before it falls into a pocket, and which pocket? Write your answer in the form $\{C, 2006\}$. https://cdn.artofproblemsolving.com/attachments/c/c/72be287af1dc9c7ba2822d901e4fc82159c7c png
2006.8 In triangle $\triangle P Q R$, the altitudes from P, Q and R measure 5, 4 and 4, respectively. Find $\overline{Q R}^{2}$.
2006.9 Poles A, B, and $P_{1}, P_{2}, P_{3}, \ldots$. are vertical line segments with bases on the x-axis. The tops of poles A and B are $(0,1)$ and $(200,5)$, respectively. A string S connects $(0,1)$ and $(200,0)$ and intersects another string connecting $(0,0)$ and $(200,5)$ at point T. Pole P_{1} is constructed with T as its top point. For each integer $i>1$, pole P_{i} is constructed so that its top point is the
intersection of S and the line segment connecting the base of P_{i-1} (on the x-axis) and the top of pole B. Find the height of pole P_{100}.
2006.10 In triangle $\triangle A B C$, points P, Q and R lie on sides $A B, B C$ and $A C$, respectively, so that $\frac{A P}{P B}=$ $\frac{B Q}{Q C}=\frac{C R}{R A}=\frac{1}{3}$. If the area of $\triangle A B C$ is 1 , determine the area of the triangle formed by the points of intersection of lines $A Q, B R$ and $C P$.
2007.1 An equilateral triangle has perimeter numerically equal to its area, which is not zero. Find its side length.
2007.2 Two spheres of radius 2 pass through each other's center. find the surface area of the regular octahedron inscribed within the space enclosed by both spheres.
2007.3 Cumulation of a polyhedron means replacing each face with a pyramid of height h using the face as a base. There is a cumulation of the cube of side length s which (after removing uncecessary edges) has twelve sides, each a congruent rhombus. what is the height h used in this cumulation?
2007.4 Nathan is standing on vertex A of triangle $A B C$, with $A B=3, B C=5$, and $C A=4$. Nathan walks according to the following plan: He moves along the altitude-to-the-hypotenuse until he reaches the hypotenuse. He has now cut the original triangle into two triangles; he now walks along the altitude to the hypotenuse of the larger one. He repeats this process forever. What is the total distance that Nathan walks?
2007.5 Given an octahedron with every edge of length s, what is the radius of the largest sphere that it will fit in this octahedron?
2007.6 Let $T I N A$ be a quadrilateral with $I A=8, I N=4, m \angle T=30^{\circ}, m \angle N A T=60^{\circ}$, and $m \angle T I A=$ $m \angle I N A$. Find $N A$.
2007.7 Two regular tetrahedra of side length 2 are positioned such that the midpoint of each side of one coincides with the midpoint of a side of the other, and the tetrahedra themselves do not coincide. Find the volume of the region in which they overlap.
2007.8 $\triangle A B C$ has $\overline{A B}=\overline{A C}$. Points M and N are midpoints of $\overline{A B}$ and $\overline{A C}$, respectively. The medians $\overline{M C}$ and $\overline{N B}$ intersect at a right angle. Find $\left(\frac{\overline{A B}}{\overline{B C}}\right)^{2}$.
2007.9 Points P, Q, R, S, T lie in the plane with S on $\overline{P R}$ and R on $\overline{Q T}$. If $P Q=5, P S=3, P R=$ $5, Q S=3$, and $R T=4 / \sqrt{3}$, what is $S T$?
2007.10 A car starts moving at constant speed at the origin facing in the positive y-direction. Its minimum turning radius is such that it the soonest it can return to the x-axis is after driving a distance

AoPS Community

SMT + RMT Geometry Rounds 2001-11

d. Let Γ be the boundary of the region the car can reach by driving at most a distance d; find an $x>0$ so that $\left(x, \frac{d}{3}+\frac{d \sqrt{3}}{2 \pi}\right)$ is on Γ.
2008.1 A regular polygon of side length 1 has the property that if regular pentagons of side length 1 are placed on each side, then each pentagon shares a side with the two adjacent ones. How many sides does such a polygon have?
2008.2 John stands against one wall of a square room with walls of length 4 meters each. He kicks a frictionless, perfectly elastic ball in such a way that it bounces off the three other walls once each and returns to him (diagram not geometrically accurate). How many meters does the ball travel?
https://cdn.artofproblemsolving.com/attachments/9/c/71e3037ea7d49da0c1c235b4c44f6eae4b053 png
2008.3 A cube is inscribed in a sphere of radius r. Find the ratio of the volume of the cube to that of the sphere.
2008.4 A circle of radius 144 has three smaller circles inside it, all congruent. Each small circle is tangent to the other two and to the large circle. Find the radius of one of the smaller circles.
2008.5 In $\triangle A B C, \angle C$ is right, $A C=2-\sqrt{3}+x$ and $B C=1-2 x+x \sqrt{3}$. Find $m \angle B$.
2008.6 Points A, B, C lie on sides $\overline{D E}, \overline{E F}$. and $F E$ of $\triangle D E F$, respectively. If $D A=3, A E=2$, $E B=2, B F=11, F C=11$, and $C D=1$, find the area of $\triangle A B C$.
2008.7 What is the area of the incircle of a triangle with side lengths 10040,6024 , and 8032 ?
2008.8 Rhombus $A B C D$ has side length ℓ, with $\cos (m \angle B)=-\frac{2}{3}$. The circle through points A, B, and D has radius 1 . Find ℓ.
2008.9 A trapezoid has bases of length 10 and 15 . Find the length of the segment that stretches from one leg of the trapezoid to the other, parallel to the bases, through the intersection point of the diagonals.
2008.10 A regular polygon with 40 sides, all of length 1 , is divided into triangles, with each vertex of each triangle being a vertex of the original polygon. Let A be the area of the smallest triangle. What is the minimum number of square root signs needed to express the exact value of A ?
2009.1 The sum of all of the interior angles of seven polygons is 180×17. Find the total number of sides of the polygons.

AoPS Community

SMT + RMT Geometry Rounds 2001-11

2009.2 The pattern in the figure below continues inward infinitely. The base of the biggest triangle is

1. All triangles are equilateral. Find the shaded area.
https://cdn.artofproblemsolving.com/attachments/e/5/8d1a2a072af330a7642f4fbd88d737a1ac29e png
2009.3 Given a regular pentagon, fi nd the ratio of its diagonal, d, to its side, a
2009.4 $A B C D$ forms a rhombus. E is the intersection of $A C$ and $B D$. F lie on $A D$ such that $E F$ is perpendicular to $F D$. Given $E F=2$ and $F D=1$. Find the area of the rhombus $A B C D$
2009.5 In the 2009 Stanford Olympics, Willy and Sammy are two bikers. The circular race track has two
lanes, the inner lane with radius 11 , and the outer with radius 12 . Willy will start on the inner lane, and Sammy on the outer. They will race for one complete lap, measured by the inner track.
What is the square of the distance between Willy and Sammy's starting positions so that they will both race
the same distance? Assume that they are of point size and ride perfectly along their respective lanes
2009.6 Equilateral triangle $A B C$ has side lengths of 24 . Points D, E, and F lies on sides $B C, C A, A B$ such that $A D \perp B C, D E \perp A C$, and $E F \perp A B$. G is the intersection of $A D$ and $E F$. Find the area of quadrilateral $B F G D$
2009.7 Four disks with disjoint interiors are mutually tangent. Three of them are equal in size and the fourth one is smaller. Find the ratio of the radius of the smaller disk to one of the larger disks.
2009.8 Three points are randomly placed on a circle. What is the probability that they lie on the same semicircle
2009.9 Two circles with centers A and B intersect at points X and Y. The minor arc $\angle X Y=120$ degrees with respect to circle A, and $\angle X Y=60$ degrees with respect to circle B. If $X Y=2$, find the area shared by the two circles.
2009.10 Right triangle $A B C$ is inscribed in circle $W . \angle C A B=65$ degrees, and $\angle C B A=25$ degrees. The median from C to $A B$ intersects W and line D. Line l_{1} is drawn tangent to W at A. Line l_{2} is drawn tangent to W at D. The lines l_{1} and l_{2} intersect at P Determine $\angle A P D$
2010.1 Find the reflection of the point $(11,16,22)$ across the plane $3 x+4 y+5 z=7$.
2010.2 Find the radius of a circle inscribed in a triangle with side lengths 4,5 , and 6

AoPS Community

SMT + RMT Geometry Rounds 2001-11

2010.3 Find the volume of a regular cubeoctahedron of side length 1 . This is a solid whose faces comprise 6 squares and 8 equilateral triangles, arranged as in the diagram below. https://cdn.artofproblemsolving.com/attachments/2/7/e758708c98ad5d8cd526ff0579d9eba6f9b8e png
2010.4 Given triangle $A B C$. D lies on $B C$ such that $A D$ bisects $B A C$. Given $A B=3, A C=9$, and $B C=8$. Find $A D$.
2010.5 Find the sum of angles $A, B, C, D, E, F, G, H, I$ in the following diagram: https://cdn.artofproblemsolving.com/attachments/c/2/26f04a7c3c97ae5a995ca8e20d599c399b5c\& png
2010.6 In the diagram below, let $O T=25$ and $A M=M B=30$. Find $M D$ https://cdn.artofproblemsolving.com/attachments/c/6/e4acdf3fe5ec81b7747b800ffc33f87d0a961 png
2010.7 $A B C$ is a triangle with $A B=5, B C=6$, and $C A=7$. Squares are drawn on each side, as in the image below. Find the area of hexagon $D E F G H I$. https://cdn.artofproblemsolving.com/attachments/3/d/81791cf692dfdbb661c4810beba0e9326405 png
2010.8 A sphere of radius 1 is internally tangent to all four faces of a regular tetrahedron. Find the tetrahedron's volume.
2010.9 For an acute triangle $A B C$ and a point X satisfying $\angle A B X+\angle A C X=\angle C B X+\angle B C X$.

Fi nd the minimum length of $A X$ if $A B=13, B C=14$, and $C A=15$.
2010.10 A, B, C, D are points along a circle, in that order. $A C$ intersects $B D$ at X. If $B C=6, B X=4$, $X D=5$, and $A C=11$, fi nd $A B$
2010.R11 Given the three points $(1608,2010,2010),(2010,2412,2010)$, and $(2010,2010,2412)$. Find the area of the circle defined by these three points.
2010.R12 Suppose we have a polyhedron consisting of triangles and quadrilaterals, and each vertex is shared by exactly 4 triangles and one quadrilateral. How many vertices are there?
2010.R13 Given the following circular section, write the height h, the height of the circle above the x-axis at a given x, as a function of x, with $-R \leq x \leq R$.
(Note θ and R are constants and θ is the angle between the x-axis and the tangent line to the circle at $x=-R$.)
https://cdn.artofproblemsolving.com/attachments/8/a/b41381338ba08f84046eaa5f84b584ae42f56 png
2010.R14 We are given a coin of diameter $\frac{1}{2}$ and a checkerboard of 1×1 squares of area 2010×2010. We must toss the coin such that it lands completely on the checkerboard. If the probability that the coin doesn't touch any of the lattice lines is $\frac{a^{2}}{b^{2}}$ where $\frac{a}{b}$ is a reduced fraction, find $a+b$.
2011.1 Triangle $A B C$ has side lengths $B C=3, A C=4, A B=5$. Let P be a point inside or on triangle $A B C$ and let the lengths of the perpendiculars from P to $B C, A C, A B$ be D_{a}, D_{b}, D_{c} respectively. Compute the minimum of $D_{a}+D_{b}+D_{c}$.
2011.2 Pentagon $A B C D E$ is inscribed in a circle of radius 1. If $\angle D E A \cong \angle E A B \cong \angle A B C, m \angle C A D=$ 60°, and $B C=2 D E$, compute the area of $A B C D E$.
2011.3 Let circle O have radius 5 with diameter $\overline{A E}$. Point F is outside circle O such that lines $\overline{F A}$ and $\overline{F E}$ intersect circle O at points B and D, respectively. If $F A=10$ and $m \angle F A E=30^{\circ}$, then the perimeter of quadrilateral ABDE can be expressed as $a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}$, where a, b, c, and d are rational. Find $a+b+c+d$.
2011.4 Let $A B C$ be any triangle, and D, E, F be points on $\overline{B C}, \overline{C A}, \overline{A B}$ such that $C D=2 B D, A E=$ $2 C E$ and $B F=2 A F . \overline{A D}$ and $\overline{B E}$ intersect at $X, \overline{B E}$ and $\overline{C F}$ intersect at Y, and $\overline{C F}$ and $\overline{A D}$ intersect at Z. Find $\frac{\text { Area }(\triangle A B C)}{\text { Area }(\triangle X Y Z)}$.
2011.5 Let $A B C D$ be a cyclic quadrilateral with $A B=6, B C=12, C D=3$, and $D A=6$. Let E, F be the intersection of lines $A B$ and $C D$, lines $A D$ and $B C$ respectively. Find $E F$.
2011.6 Two parallel lines ℓ_{1} and ℓ_{2} lie on a plane, distance d apart. On ℓ_{1} there are an infinite number of points $A_{1}, A_{2}, A_{3}, \ldots$, in that order, with $A_{n} A_{n+1}=2$ for all n. On ℓ_{2} there are an infinite number of points $B_{1}, B_{2}, B_{3}, \ldots$, in that order and in the same direction, satisfying $B_{n} B_{n+1}=1$ for all n. Given that $A_{1} B_{1}$ is perpendicular to both ℓ_{1} and ℓ_{2}, express the sum $\sum_{i=1}^{\infty} \angle A_{i} B_{i} A_{i+1}$ in terms of d.
https://cdn.artofproblemsolving.com/attachments/c/9/24b8000e19cffb401234be010af78a6eb675? png
2011.7 In a unit square $A B C D$, find the minimum of $\sqrt{2} A P+B P+C P$ where P is a point inside $A B C D$.
2011.8 We have a unit cube $A B C D E F G H$ where $A B C D$ is the top side and $E F G H$ is the bottom side with E below A, F below B, and so on. Equilateral triangle $B D G$ cuts out a circle from the cube's inscribed sphere. Find the area of the circle.
2011.9 We have a circle O with radius 10 and four smaller circles $O_{1}, O_{2}, O_{3}, O_{4}$ of radius 1 which are internally tangent to O, with their tangent points to O in counterclockwise order. The small circles do not intersect each other. Among the two common external tangents of O_{1} and O_{2}, let
ℓ_{12} be the one which separates O_{1} and O_{2} from the other two circles, and let the intersections of ℓ_{12} and O be A_{1} and B_{2}, with A_{1} denoting the point closer to O_{1}. Define $\ell_{23}, \ell_{34}, \ell_{41}$ and A_{2}, $A_{3}, A_{4}, B_{3}, B_{4}, B_{1}$ similarly. Suppose that the arcs $A_{1} B_{1}, A_{2} B_{2}$, and $A_{3} B_{3}$ have length $\pi, 3 \pi / 2$, and $5 \pi / 2$ respectively. Find the arc length of $A_{4} B_{4}$.
2011.10 Given a triangle $A B C$ with $B C=5, A C=7$, and $A B=8$, find the side length of the largest equilateral triangle $P Q R$ such that A, B, C lie on $Q R, R P, P Q$ respectively.
2011.R11 Jeffrey starts out at $(0,0)$ facing in some direction. Each second, Jeffrey walks forward 1 unit, and then turns counterclockwise by 45°. When Jeffrey returns to his starting point, what is the area of the shape he has made?
2011.R12 Let $\triangle A B C$ be equilateral. Two points D and E are on side $B C$ (with order B, D, E, C), and satisfy $\angle D A E=30^{\circ}$. If $B D=2$ and $C E=3$, what is $B C$? https://cdn.artofproblemsolving.com/attachments/c/8/27b756f84e086fe31b5ea695f51fb6c78b63c png
2011.R13 Given $\triangle A B C$. Let A^{\prime} lie on $B C$ such that $B A^{\prime}=\frac{1}{4} A^{\prime} C, B^{\prime}$ lie on AC such that $A B^{\prime}=B^{\prime} C$, and C^{\prime} lie on $A B$ such that $2 A C^{\prime}=B C^{\prime}$. Let D be the point of intersection between $A A^{\prime}$ and $C C^{\prime}, E$ the intersection point of between $A A^{\prime}$ and $B B^{\prime}$, and F the point of intersection between $B B^{\prime}$ and $C C^{\prime}$. What is area $(\triangle D E F) /$ area $(\triangle A B C)$?

