## AoPS Community

## 2022 Middle European Mathematical Olympiad

## Middle European Mathematical Olympiad 2022

www.artofproblemsolving.com/community/c3125985
by Tintarn, square_root_of_3, a_507_bc

- Individual Competition

1 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+f(x+y))=x+f(f(x)+y)
$$

holds for all real numbers $x$ and $y$.
2 Let $n$ be a positive integer. Anna and Beatrice play a game with a deck of $n$ cards labelled with the numbers $1,2, \ldots, n$. Initially, the deck is shuffled. The players take turns, starting with Anna. At each turn, if $k$ denotes the number written on the topmost card, then the player first looks at all the cards and then rearranges the $k$ topmost cards. If, after rearranging, the topmost card shows the number $k$ again, then the player has lost and the game ends. Otherwise, the turn of the other player begins. Determine, depending on the initial shuffle, if either player has a winning strategy, and if so, who does.

3 Let $A B C D$ be a parallelogram with $\angle D A B<90$ Let $E$ be the point on the line $B C$ such that $A E=A B$ and let $F$ be the point on the line $C D$ such that $A F=A D$. The circumcircle of the triangle $C E F$ intersects the line $A E$ again in $P$ and the line $A F$ again in $Q$. Let $X$ be the reflection of $P$ over the line $D E$ and $Y$ the reflection of $Q$ over the line $B F$. Prove that $A, X, Y$ lie on the same line.

4 Initially, two distinct positive integers $a$ and $b$ are written on a blackboard. At each step, Andrea picks two distinct numbers $x$ and $y$ on the blackboard and writes the number $\operatorname{gcd}(x, y)+l c m(x, y)$ on the blackboard as well. Let $n$ be a positive integer. Prove that, regardless of the values of $a$ and $b$, Andrea can perform a finite number of steps such that a multiple of $n$ appears on the blackboard.

- Team Competition

1 Given a pair $\left(a_{0}, b_{0}\right)$ of real numbers, we define two sequences $a_{0}, a_{1}, a_{2}, \ldots$ and $b_{0}, b_{1}, b_{2}, \ldots$ of real numbers by $a_{n+1}=a_{n}+b_{n}$ and $b_{n+1}=a_{n} b_{n}$ for all $n=0,1,2, \ldots$. Find all pairs $\left(a_{0}, b_{0}\right)$ of real numbers such that $a_{2022}=a_{0}$ and $b_{2022}=b_{0}$.

2 Let $k$ be a positive integer and $a_{1}, a_{2}, \ldots, a_{k}$ be nonnegative real numbers. Initially, there is a sequence of $n \geq k$ zeros written on a blackboard. At each step, Nicole chooses $k$ consecutive numbers written on the blackboard and increases the first number by $a_{1}$, the second one by $a_{2}$, and so on, until she increases the $k$-th one by $a_{k}$. After a positive number of steps, Nicole
managed to make all the numbers on the blackboard equal. Prove that all the nonzero numbers among $a_{1}, a_{2}, \ldots, a_{k}$ are equal.

3 Let $n$ be a positive integer. There are $n$ purple and $n$ white cows queuing in a line in some order. Tim wishes to sort the cows by colour, such that all purple cows are at the front of the line. At each step, he is only allowed to swap two adjacent groups of equally many consecutive cows. What is the minimal number of steps Tim needs to be able to fulfill his wish, regardless of the initial alignment of the cows?

4 Let $n$ be a positive integer. We are given a $2 n \times 2 n$ table. Each cell is coloured with one of $2 n^{2}$ colours such that each colour is used exactly twice. Jana stands in one of the cells. There is a chocolate bar lying in one of the other cells. Jana wishes to reach the cell with the chocolate bar. At each step, she can only move in one of the following two ways. Either she walks to an adjacent cell or she teleports to the other cell with the same colour as her current cell. (Jana can move to an adjacent cell of the same colour by either walking or teleporting.) Determine whether Jana can fulfill her wish, regardless of the initial configuration, if she has to alternate between the two ways of moving and has to start with a teleportation.

5 Let $\Omega$ be the circumcircle of a triangle $A B C$ with $\angle C A B=90$. The medians through $B$ and $C$ meet $\Omega$ again at $D$ and $E$, respectively. The tangent to $\Omega$ at $D$ intersects the line $A C$ at $X$ and the tangent to $\Omega$ at $E$ intersects the line $A B$ at $Y$. Prove that the line $X Y$ is tangent to $\Omega$.

6 Let $A B C D$ be a convex quadrilateral such that $A C=B D$ and the sides $A B$ and $C D$ are not parallel. Let $P$ be the intersection point of the diagonals $A C$ and $B D$. Points $E$ and $F$ lie, respectively, on segments $B P$ and $A P$ such that $P C=P E$ and $P D=P F$. Prove that the circumcircle of the triangle determined by the lines $A B, C D, E F$ is tangent to the circumcircle of the triangle $A B P$.

7 Determine all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f$ is increasing (not necessarily strictly) and the numbers $f(n)+n+1$ and $f(f(n))-f(n)$ are both perfect squares for every positive integer $n$.

8 We call a positive integer cheesy if we can obtain the average of the digits in its decimal representation by putting a decimal separator after the leftmost digit. Prove that there are only finitely many cheesy numbers.

