

AoPS Community

China Second Round 2022

www.artofproblemsolving.com/community/c3138864

by TheRealRuirui, David-Vieta, sqing

- 1 In a convex quadrilateral ABCD, $\angle ABC = \angle ADC = 90^{\circ}$. A point *P* is chosen from the diagonal *BD* such that $\angle APB = 2\angle CPD$, points *X*, *Y* is chosen from the segment *AP* such that $\angle AXB = 2\angle ADB$, $\angle AYD = 2\angle ABD$. Prove that: BD = 2XY.
- **2** Integer *n* has *k* different prime factors. Prove that $\sigma(n) \mid (2n k)!$
- **3** Let a_1, a_2, \dots, a_{100} be non-negative integers such that (1) There are positive integers $k \le 100$ such that $a_1 \le a_2 \le \dots \le a_k$ and $a_i = 0$ (i > k);

(2) $a_1 + a_2 + a_3 + \dots + a_{100} = 100;$

(3) $a_1 + 2a_2 + 3a_3 + \dots + 100a_{100} = 2022.$

Find the minimum of $a_1 + 2^2 a_2 + 3^2 a_3 + \cdots + 100^2 a_{100}$.

4 Find the smallest positive integer k with the following property: if each cell of a 100×100 grid is dyed with one color and the number of cells of each color is not more than 104, then there is a $k \times 1$ or $1 \times k$ rectangle that contains cells of at least three different colors.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.