China Second Round 2022
www.artofproblemsolving.com/community/c3138864
by TheRealRuirui, David-Vieta, sqing

1 In a convex quadrilateral $A B C D, \angle A B C=\angle A D C=90^{\circ}$. A point P is chosen from the diagonal $B D$ such that $\angle A P B=2 \angle C P D$, points X, Y is chosen from the segment $A P$ such that $\angle A X B=2 \angle A D B, \angle A Y D=2 \angle A B D$. Prove that: $B D=2 X Y$.

2 Integer n has k different prime factors. Prove that $\sigma(n) \mid(2 n-k)$!
3 Let $a_{1}, a_{2}, \cdots, a_{100}$ be non-negative integers such that (1) There are positive integers $k \leq 100$ such that $a_{1} \leq a_{2} \leq \cdots \leq a_{k}$
and $a_{i}=0(i>k)$;
(2) $a_{1}+a_{2}+a_{3}+\cdots+a_{100}=100$;
(3) $a_{1}+2 a_{2}+3 a_{3}+\cdots+100 a_{100}=2022$.

Find the minimum of $a_{1}+2^{2} a_{2}+3^{2} a_{3}+\cdots+100^{2} a_{100}$.
4 Find the smallest positive integer k with the following property: if each cell of a 100×100 grid is dyed with one color and the number of cells of each color is not more than 104, then there is a $k \times 1$ or $1 \times k$ rectangle that contains cells of at least three different colors.

