AoPS Community

1998 Rioplatense Mathematical Olympiad, Level 3

VII - Rioplatense Mathematical Olympiad, Level 31998

www.artofproblemsolving.com/community/c3146025
by parmenides51

- Day 1

1 Consider an arc $A B$ of a circle C and a point P variable in that arc $A B$. Let D be the midpoint of the arc $A P$ that doeas not contain B and let E be the midpoint of the arc $B P$ that does not contain A. Let C_{1} be the circle with center D passing through A and C_{2} be the circle with center E passing through B. Prove that the line that contains the intersection points of C_{1} and C_{2} passes through a fixed point.

2 Given an integer $n>2$, consider all sequences $x_{1}, x_{2}, \ldots, x_{n}$ of nonnegative real numbers such that

$$
x_{1}+2 x_{2}+\ldots+n x_{n}=1 .
$$

Find the maximum value and the minimum value of $x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}$ and determine all the sequences $x_{1}, x_{2}, \ldots, x_{n}$ for which these values are obtained.

3 Let X be a finite set of positive integers.
Prove that for every subset A of X, there is a subset B of X, with the following property:
For each element e of X, e divides an odd number of elements of B, if and only if e is an element of A.

- Day 2

4 Let M be a subset of $\{1,2, \ldots, 1998\}$ with 1000 elements. Prove that it is always possible to find two elements a and b in M, not necessarily distinct, such that $a+b$ is a power of 2 .

5 We say that M is the midpoint of the open polygonal $X Y Z$, formed by the segments $X Y, Y Z$, if M belongs to the polygonal and divides its length by half. Let $A B C$ be a acute triangle with orthocenter H. Let $A_{1}, B_{1}, C_{1}, A_{2}, B_{2}, C_{2}$ be the midpoints of the open polygonal $C A B, A B C, B C A, B H C, C H A$, respectively. Show that the lines $A_{1} A_{2}, B_{1} B_{2}$ and $C_{1} C_{2}$ are concurrent.

6 Let k be a fixed positive integer. For each $n=1,2, \ldots$, we will call configuration of order n any set of $k n$ points of the plane, which does not contain 3 collinear, colored with k given colors, so that there are n points of each color. Determine all positive integers n with the following property: in each configuration of order n, it is possible to select three points of each color, such that the k triangles with vertices of the same color that are determined are disjoint in pairs.

