

## **AoPS Community**

## 1997 Rioplatense Mathematical Olympiad, Level 3

## VI - Rioplatense Mathematical Olympiad, Level 3 1997

www.artofproblemsolving.com/community/c3146026 by parmenides51

| - | Day 1                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Find all positive integers $n$ with the following property:<br>there exists a polynomial $P_n(x)$ of degree $n$ , with integer coefficients, such that $P_n(0) = 0$ and<br>$P_n(x) = n$ for $n$ distinct integer solutions.                                                                                                                                                                                             |
| 2 | Consider a prism, not necessarily right, whose base is a rhombus $ABCD$ with side $AB = 5$ and diagonal $AC = 8$ . A sphere of radius $r$ is tangent to the plane $ABCD$ at $C$ and tangent to the edges $AA_1$ , $BB_1$ and $DD_1$ of the prism. Calculate $r$ .                                                                                                                                                       |
| 3 | Prove that there are infinitely many positive integers $n$ such that the number of positive divisors in $2^n - 1$ is greater than $n$ .                                                                                                                                                                                                                                                                                 |
| - | Day 2                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4 | Circles $c_1$ and $c_2$ are tangent internally to circle $c$ at points $A$ and $B$ , respectively, as seen in the figure. The inner tangent common to $c_1$ and $c_2$ touches these circles in $P$ and $Q$ , respectively. Show that the $AP$ and $BQ$ lines intersect the circle $c$ at diametrically opposite points.<br>https://cdn.artofproblemsolving.com/attachments/0/a/9490a4d7ba2038e490a858b14ba21d07377c gif |
| 5 | Let $x_1, x_2,, x_n$ be non-negative numbers $n \ge 3$ such that $x_1 + x_2 + + x_n = 1$ .<br>Determine the maximum possible value of the expression $x_1x_2 + x_2x_3 + + x_{n-1}x_n$ .                                                                                                                                                                                                                                 |
| 6 | Let N be the set of positive integers.<br>Determine if there is a function $f : N \to N$ such that $f(f(n)) = 2n$ , for all n belongs to N.                                                                                                                                                                                                                                                                             |

🟟 AoPS Online 🟟 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.