AoPS Community

1997 Rioplatense Mathematical Olympiad, Level 3

VI - Rioplatense Mathematical Olympiad, Level 31997

www.artofproblemsolving.com/community/c3146026
by parmenides51

- Day 1

1 Find all positive integers n with the following property: there exists a polynomial $P_{n}(x)$ of degree n, with integer coefficients, such that $P_{n}(0)=0$ and $P_{n}(x)=n$ for n distinct integer solutions.

2 Consider a prism, not necessarily right, whose base is a rhombus $A B C D$ with side $A B=5$ and diagonal $A C=8$. A sphere of radius r is tangent to the plane $A B C D$ at C and tangent to the edges $A A_{1}, B B_{1}$ and $D D_{1}$ of the prism. Calculate r.

3 Prove that there are infinitely many positive integers n such that the number of positive divisors in $2^{n}-1$ is greater than n.

- Day 2

4 Circles c_{1} and c_{2} are tangent internally to circle c at points A and B, respectively, as seen in the figure. The inner tangent common to c_{1} and c_{2} touches these circles in P and Q, respectively. Show that the $A P$ and $B Q$ lines intersect the circle c at diametrically opposite points. https://cdn.artofproblemsolving.com/attachments/0/a/9490a4d7ba2038e490a858b14ba21d07377c! gif

5 Let $x_{1}, x_{2}, \ldots, x_{n}$ be non-negative numbers $n \geq 3$ such that $x_{1}+x_{2}+\ldots+x_{n}=1$.
Determine the maximum possible value of the expression $x_{1} x_{2}+x_{2} x_{3}+\ldots+x_{n-1} x_{n}$.
6 Let N be the set of positive integers.
Determine if there is a function $f: N \rightarrow N$ such that $f(f(n))=2 n$, for all n belongs to N.

