AoPS Community

III - Rioplatense Mathematical Olympiad, Level 31993

www.artofproblemsolving.com/community/c3146030
by parmenides51

- Day 1

1 Find all functions f defined on the integers greater than or equal to 1 that satisfy:
(a) for all $n, f(n)$ is a positive integer.
(b) $f(n+m)=f(n) f(m)$ for all m and n.
(c) There exists n_{0} such that $f\left(f\left(n_{0}\right)\right)=\left[f\left(n_{0}\right)\right]^{2}$.

2 An integer is written in each cell of a board of N rows and $N+1$ columns. Prove that some columns (possibly none) can be deleted so that in each row the sum of the numbers left uncrossed out is even.

3 Given three points A, B and C (not collinear) construct the equilateral triangle of greater perimeter such that each of its sides passes through one of the given points.

- Day 2

$4 x$ and y are real numbers such that $6-x, 3+y^{2}, 11+x, 14-y^{2}$ are greater than zero.
Find the maximum of the function

$$
f(x, y)=\sqrt{(6-x)\left(3+y^{2}\right)}+\sqrt{(11+x)\left(14-y^{2}\right)} .
$$

5 Prove that for every integer $k \geq 2$ there are k different natural numbers $n_{1}, n_{2}, \ldots, n_{k}$ such that:

$$
\frac{1}{n_{1}}+\frac{1}{n_{2}}+\ldots+\frac{1}{n_{k}}=\frac{3}{17}
$$

6 Let $A B C D E$ be pentagon such that $A E=E D$ and $B C=C D$. It is known that $\angle B A E+$ $\angle E D C+\angle C B A=360^{\circ}$ and that P is the midpoint of $A B$. Show that the triangle $E C P$ is right.

