

AoPS Community

1993 Rioplatense Mathematical Olympiad, Level 3

III - Rioplatense Mathematical Olympiad, Level 3 1993

www.artofproblemsolving.com/community/c3146030 by parmenides51

-	Day 1
1	Find all functions f defined on the integers greater than or equal to 1 that satisfy: (a) for all $n, f(n)$ is a positive integer. (b) $f(n+m) = f(n)f(m)$ for all m and n . (c) There exists n_0 such that $f(f(n_0)) = [f(n_0)]^2$.
2	An integer is written in each cell of a board of N rows and $N + 1$ columns. Prove that some columns (possibly none) can be deleted so that in each row the sum of the numbers left uncrossed out is even.
3	Given three points A, B and C (not collinear) construct the equilateral triangle of greater perimeter such that each of its sides passes through one of the given points.
-	Day 2
4	x and y are real numbers such that $6 - x$, $3 + y^2$, $11 + x$, $14 - y^2$ are greater than zero. Find the maximum of the function $f(x, y) = \sqrt{(6 - x)(3 + y^2)} + \sqrt{(11 + x)(14 - y^2)}.$

5 Prove that for every integer $k \ge 2$ there are k different natural numbers $n_1, n_2, ..., n_k$ such that:

$$\frac{1}{n_1} + \frac{1}{n_2} + \ldots + \frac{1}{n_k} = \frac{3}{17}$$

6 Let ABCDE be pentagon such that AE = ED and BC = CD. It is known that $\angle BAE + \angle EDC + \angle CBA = 360^{\circ}$ and that P is the midpoint of AB. Show that the triangle ECP is right.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.