AoPS Community

1995 Rioplatense Mathematical Olympiad, Level 3

IV - Rioplatense Mathematical Olympiad, Level 31995

www.artofproblemsolving.com/community/c3146031
by parmenides51

- Day 1

1 Let n and p be two integers with p positive prime, such that $p n+1$ is a perfect square. Show that $n+1$ is the sum of p perfect squares, not necessarily distinct.

2 In a circle of center O and radius r, a triangle $A B C$ of orthocenter H is inscribed. It is considered a triangle $A^{\prime} B^{\prime} C^{\prime}$ whose sides have by length the measurements of the segments $A B, C H$ and $2 r$. Determine the triangle $A B C$ so that the area of the triangle $A^{\prime} B^{\prime} C^{\prime}$ is maximum.

3 Given a regular tetrahedron with edge a, its edges are divided into n equal segments, thus obtaining $n+1$ points: 2 at the ends and $n-1$ inside. The following set of planes is considered: - those that contain the faces of the tetrahedron, and • each of the planes parallel to a face of the tetrahedron and containing at least one of the points determined above.
Now all those points P that belong (simultaneously) to four planes of that set are considered. Determine the smallest positive natural n so that among those points P the eight vertices of a square-based rectangular parallelepiped can be chosen.

- \quad Day 2

4 Given the natural numbers a and b, with $1 \leq a<b$, prove that there exist natural numbers $n_{1}<n_{2}<\ldots<n_{k}$, with $k \leq a$ such that

$$
\frac{a}{b}=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\ldots+\frac{1}{n_{k}}
$$

$5 \quad$ Consider $2 n$ points in the plane. Two players A and B alternately choose a point on each move. After $2 n$ moves, there are no points left to choose from and the game ends.
Add up all the distances between the points chosen by A and add up all the distances between the points chosen by B. The one with the highest sum wins.
If A starts the game, describe the winner's strategy.
Clarification: Consider that all the partial sums of distances between points give different numbers.

6 A convex polygon with $2 n$ sides is called rhombic if its sides are equal and all pairs of opposite sides are parallel.
A rhombic polygon can be partitioned into rhombic quadrilaterals.
For what value of n, a $2 n$-sided rhombic polygon splits into 666 rhombic quadrilaterals?

