AoPS Community

Mediterranean Mathematics Olympiad 2022

www.artofproblemsolving.com/community/c3149231
by parmenides51

1 Let $S=\{1, \ldots, 999\}$. Determine the smallest integer m. for which there exist m two-sided cards C_{1}, \ldots, C_{m} with the following properties: \bullet Every card C_{i} has an integer from S on one side and another integer from S on the other side. • For all $x, y \in S$ with $x \neq y$, it is possible to select a card C_{i} that shows x on one its sides and another card C_{j} (with $i \neq j$) that shows y on one of its sides.

2 (a) Decide whether there exist two decimal digits a and b, such that every integer with decimal representation $a b 222 \ldots 231$ is divisible by 73 .
(b) Decide whether there exist two decimal digits c and d, such that every integer with decimal representation $c d 222 \ldots 231$ is divisible by 79 .

3 Let a, b, c, d be four positive real numbers. Prove that

$$
\frac{(a+b+c)^{2}}{a^{2}+b^{2}+c^{2}}+\frac{(b+c+d)^{3}}{b^{3}+c^{3}+d^{3}}+\frac{(c+d+a)^{4}}{c^{4}+d^{4}+a^{4}}+\frac{(d+a+b)^{5}}{d^{5}+a^{5}+b^{5}} \leq 120
$$

4 The triangle $A B C$ is inscribed in a circle γ of center O, with $A B<A C$. A point D on the angle bisector of $\angle B A C$ and a point E on segment $B C$ satisfy $O E$ is parallel to $A D$ and $D E \perp B C$. Point K lies on the extension line of $E B$ such that $E A=E K$. A circle pass through points A, K, D meets the extension line of $B C$ at point P, and meets the circle of center O at point $Q \neq A$. Prove that the line $P Q$ is tangent to the circle γ.

