AoPS Community

Germany Team Selection Test 2016

www.artofproblemsolving.com/community/c315214
by gavrilos, Kezer, va2010, ABCDE

- VAIMO 1

1 The two circles Γ_{1} and Γ_{2} with the midpoints O_{1} resp. O_{2} intersect in the two distinct points A and B. A line through A meets Γ_{1} in $C \neq A$ and Γ_{2} in $D \neq A$. The lines $C O_{1}$ and $D O_{2}$ intersect in X.
Prove that the four points O_{1}, O_{2}, B and X are concyclic.
2 The positive integers $a_{1}, a_{2}, \ldots, a_{n}$ are aligned clockwise in a circular line with $n \geq 5$. Let $a_{0}=$ a_{n} and $a_{n+1}=a_{1}$. For each $i \in\{1,2, \ldots, n\}$ the quotient

$$
q_{i}=\frac{a_{i-1}+a_{i+1}}{a_{i}}
$$

is an integer. Prove

$$
2 n \leq q_{1}+q_{2}+\cdots+q_{n}<3 n .
$$

3 In the beginning there are 100 integers in a row on the blackboard. Kain and Abel then play the following game: A move consists in Kain choosing a chain of consecutive numbers; the length of the chain can be any of the numbers $1,2, \ldots, 100$ and in particular it is allowed that Kain only chooses a single number. After Kain has chosen his chain of numbers, Abel has to decide whether he wants to add 1 to each of the chosen numbers or instead subtract 1 from of the numbers. After that the next move begins, and so on.

If there are at least 98 numbers on the blackboard that are divisible by 4 after a move, then Kain has won.

Prove that Kain can force a win in a finite number of moves.

- VAIMO 2

1 Determine all positive integers M such that the sequence $a_{0}, a_{1}, a_{2}, \cdots$ defined by

$$
a_{0}=M+\frac{1}{2} \quad \text { and } \quad a_{k+1}=a_{k}\left\lfloor a_{k}\right\rfloor \quad \text { for } k=0,1,2, \cdots
$$

contains at least one integer term.
2 Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with the property that

$$
f(x-f(y))=f(f(x))-f(y)-1
$$

holds for all $x, y \in \mathbb{Z}$.
3 Let $A B C$ be a triangle with $\angle C=90^{\circ}$, and let H be the foot of the altitude from C. A point D is chosen inside the triangle $C B H$ so that $C H$ bisects $A D$. Let P be the intersection point of the lines $B D$ and $C H$. Let ω be the semicircle with diameter $B D$ that meets the segment $C B$ at an interior point. A line through P is tangent to ω at Q. Prove that the lines $C Q$ and $A D$ meet on ω.

