Art of Problem Solving
www.artofproblemsolving.com/community/c3161321
by parmenides51, a_507_bc

- Day 1

1 Given is an equilateral triangle $A B C$ with circumcenter O. Let D be a point on to minor arc $B C$ of its circumcircle such that $D B>D C$. The perpendicular bisector of $O D$ meets the circumcircle at E, F, with E lying on the minor arc $B C$. The lines $B E$ and $C F$ meet at P. Prove that $P D \perp B C$.

2 Let $S=\{13,133, \cdots\}$ be the set of the positive integers of the form $133 \cdots 3$. Consider a horizontal row of 2022 cells. Ana and Borja play a game: they alternatively write a digit on the leftmost empty cell, starting with Ana. When the row is filled, the digits are read from left to right to obtain a 2022-digit number N. Borja wins if N is divisible by a number in S, otherwise Ana wins. Find which player has a winning strategy and describe it.
$3 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(y f(x))+f(x-1)=f(x) f(y)$ and $|f(x)|<2022$ for all $0<x<1$.

- \quad Day 2

4 Let $n>2$ be a positive integer. Given is a horizontal row of n cells where each cell is painted blue or red. We say that a block is a sequence of consecutive boxes of the same color. Arepito the crab is initially standing at the leftmost cell. On each turn, he counts the number m of cells belonging to the largest block containing the square he is on, and does one of the following:

If the square he is on is blue and there are at least m squares to the right of him, Arepito moves m squares to the right;

If the square he is in is red and there are at least m squares to the left of him, Arepito moves m cells to the left;

In any other case, he stays on the same square and does not move any further.
For each n, determine the smallest integer k for which there is an initial coloring of the row with k blue cells, for which Arepito will reach the rightmost cell.
$5 \quad$ Let $A B C$ be an acute triangle with circumcircle Γ. Let P and Q be points in the half plane defined by $B C$ containing A, such that $B P$ and $C Q$ are tangents to Γ and $P B=B C=C Q$. Let K and L be points on the external bisector of the angle $\angle C A B$, such that $B K=B A, C L=C A$. Let M be the intersection point of the lines $P K$ and $Q L$. Prove that $M K=M L$.
$6 \quad$ Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$, such that $f(a) f(a+b)-a b$ is a perfect square for all $a, b \in \mathbb{N}$.

