2022 Iberoamerican

AoPS Community

www.artofproblemsolving.com/community/c3161321 by parmenides51, a_507_bc

-	Day 1
1	Given is an equilateral triangle ABC with circumcenter O . Let D be a point on to minor arc BC of its circumcircle such that $DB > DC$. The perpendicular bisector of OD meets the circumcircle at E, F , with E lying on the minor arc BC . The lines BE and CF meet at P . Prove that $PD \perp BC$.
2	Let $S = \{13, 133, \dots\}$ be the set of the positive integers of the form $133 \dots 3$. Consider a horizon- tal row of 2022 cells. Ana and Borja play a game: they alternatively write a digit on the leftmost empty cell, starting with Ana. When the row is filled, the digits are read from left to right to obtain a 2022-digit number N . Borja wins if N is divisible by a number in S , otherwise Ana wins. Find which player has a winning strategy and describe it.
3	Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that $f(yf(x)) + f(x-1) = f(x)f(y)$ and $ f(x) < 2022$ for all $0 < x < 1$.
-	Day 2
4	Let $n > 2$ be a positive integer. Given is a horizontal row of n cells where each cell is painted blue or red. We say that a block is a sequence of consecutive boxes of the same color. Arepito the crab is initially standing at the leftmost cell. On each turn, he counts the number m of cells belonging to the largest block containing the square he is on, and does one of the following:
	If the square he is on is blue and there are at least m squares to the right of him, Arepito moves m squares to the right;
	If the square he is in is red and there are at least m squares to the left of him, Arepito moves m cells to the left;
	In any other case, he stays on the same square and does not move any further.
	For each n , determine the smallest integer k for which there is an initial coloring of the row with k blue cells, for which Arepito will reach the rightmost cell.
5	Let ABC be an acute triangle with circumcircle Γ . Let P and Q be points in the half plane defined by BC containing A , such that BP and CQ are tangents to Γ and $PB = BC = CQ$. Let K and L be points on the external bisector of the angle $\angle CAB$, such that $BK = BA, CL = CA$. Let M be the intersection point of the lines PK and QL . Prove that $MK = ML$.

AoPS Community

6 Find all functions $f : \mathbb{N} \to \mathbb{N}$, such that f(a)f(a+b) - ab is a perfect square for all $a, b \in \mathbb{N}$.

Act of Problem Solving is an ACS WASC Accredited School.