AoPS Community

2000 Regional Competition For Advanced Students

Regional Competition For Advanced Students 2000

www.artofproblemsolving.com/community/c3164241
by parmenides51

1 For which natural numbers n does $2^{n}>10 n^{2}-60 n+80$ hold?
2 For any real number a, find all real numbers x that satisfy the following equation.

$$
(2 x+1)^{4}+a x(x+1)-\frac{x}{2}=0
$$

3 We consider two circles $k_{1}\left(M_{1}, r_{1}\right)$ and $k_{2}\left(M_{2}, r_{2}\right)$ with $z=M_{1} M_{2}>r_{1}+r_{2}$ and a common outer tangent with the tangent points P_{1} and $P 2$ (that is, they lie on the same side of the connecting line $M_{1} M_{2}$). We now change the radii so that their sum is $r_{1}+r_{2}=c$ remains constant. What set of points does the midpoint of the tangent segment $P_{1} P_{2}$ run through, when r_{1} varies from 0 to c ?

4 We consider the sequence $\left\{u_{n}\right\}$ defined by recursion $u_{n+1}=\frac{u_{n}\left(u_{n}+1\right)}{n}$ for $n \geq 1$.
(a) Determine the terms of the sequence for $u_{1}=1$.
(b) Show that if a member of the sequence is rational, then all subsequent members are also rational numbers.
(c) Show that for every natural number K there is a $u_{1}>1$ such that the first K terms of the sequence are natural numbers.

