

AoPS Community

National Science Olympiad 2022

www.artofproblemsolving.com/community/c3165630

by parmenides51, GorgonMathDota, AngleWatchers, somebodyyouusedtoknow

-	Day 1
1	Determine all functions $f:\mathbb{R} \to \mathbb{R}$ such that for any $x,y \in \mathbb{R}$ we have
	f(f(f(x)) + f(y)) = f(y) - f(x)
2	Let $P(x)$ be a polynomial with integer coefficient such that $P(1) = 10$ and $P(-1) = 22$. (a) Give an example of $P(x)$ such that $P(x) = 0$ has an integer root. (b) Suppose that $P(0) = 4$, prove that $P(x) = 0$ does not have an integer root.
3	Let $ABCD$ be a rectangle. Points E and F are on diagonal AC such that F lies between A and E ; and E lies between C and F . The circumcircle of triangle BEF intersects AB and BC at G and H respectively, and the circumcircle of triangle DEF intersects AD and CD at I and J respectively. Prove that the lines GJ , IH and AC concur at a point.
4	Given a regular 26-gon. Prove that for any 9 vertices of that regular 26-gon, then there exists three vertices that forms an isosceles triangle.
-	Day 2
5	Let $N \ge 2$ be a positive integer. Given a sequence of natural numbers $a_1, a_2, a_3, \ldots, a_{N+1}$ such that for every integer $1 \le i \le j \le N+1$,
	$a_i a_{i+1} a_{i+2} \dots a_j \not\equiv 1 \mod N$
	Prove that there exist a positive integer $k \leq N + 1$ such that $gcd(a_k, N) \neq 1$
6	In a triangle ABC , D and E lies on AB and AC such that DE is parallel to BC . There exists point P in the interior of $BDEC$ such that
	$\angle BPD = \angle CPE = 90^{\circ}$
	Prove that the line AP passes through the circumcenter of triangles EPD and BPC .
7	Let A be the sequence of zeroes and ones (binary sequence). The sequence can be modified by the following operation: we may pick a block or a contiguous subsequence where there are

AoPS Community

2022 Indonesia MO

an unequal number of zeroes and ones, and then flip their order within the block (so block a_1, a_2, \ldots, a_r becomes $a_r, a_{r-1}, \ldots, a_1$).

As an example, let A be the sequence 1, 1, 0, 0, 1. We can pick block 1, 0, 0 and flip it, so the sequence 1, 1, 0, 0, 1 becomes 1, 0, 0, 1, 1. However, we cannot pick block 1, 1, 0, 0 and flip their order since they contain the same number of 1s and 0s.

Two sequences A and B are called *related* if A can be transformed into B using a finite number the operation mentioned above.

Determine the largest natural number n for which there exists n different sequences A_1, A_2, \ldots, A_n where each sequence consists of 2022 digits, and for every index $i \neq j$, the sequence A_i is not related to A_j .

8 Determine the smallest positive real *K* such that the inequality

$$K + \frac{a+b+c}{3} \ge (K+1)\sqrt{\frac{a^2+b^2+c^2}{3}}$$

holds for any real numbers $0 \le a, b, c \le 1$.

Proposed by Fajar Yuliawan, Indonesia

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.