Art of Problem Solving

AoPS Community

National Science Olympiad 2022

www.artofproblemsolving.com/community/c3165630
by parmenides51, GorgonMathDota, AngleWatchers, somebodyyouusedtoknow

- Day 1

1 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for any $x, y \in \mathbb{R}$ we have

$$
f(f(f(x))+f(y))=f(y)-f(x)
$$

2 Let $P(x)$ be a polynomial with integer coefficient such that $P(1)=10$ and $P(-1)=22$.
(a) Give an example of $P(x)$ such that $P(x)=0$ has an integer root.
(b) Suppose that $P(0)=4$, prove that $P(x)=0$ does not have an integer root.
$3 \quad$ Let $A B C D$ be a rectangle. Points E and F are on diagonal $A C$ such that F lies between A and E; and E lies between C and F. The circumcircle of triangle $B E F$ intersects $A B$ and $B C$ at G and H respectively, and the circumcircle of triangle $D E F$ intersects $A D$ and $C D$ at I and J respectively. Prove that the lines $G J, I H$ and $A C$ concur at a point.

4 Given a regular 26 -gon. Prove that for any 9 vertices of that regular 26 -gon, then there exists three vertices that forms an isosceles triangle.

- Day 2

5 Let $N \geq 2$ be a positive integer. Given a sequence of natural numbers $a_{1}, a_{2}, a_{3}, \ldots, a_{N+1}$ such that for every integer $1 \leq i \leq j \leq N+1$,

$$
a_{i} a_{i+1} a_{i+2} \ldots a_{j} \not \equiv 1 \quad \bmod N
$$

Prove that there exist a positive integer $k \leq N+1$ such that $\operatorname{gcd}\left(a_{k}, N\right) \neq 1$
6 In a triangle $A B C, D$ and E lies on $A B$ and $A C$ such that $D E$ is parallel to $B C$. There exists point P in the interior of $B D E C$ such that

$$
\angle B P D=\angle C P E=90^{\circ}
$$

Prove that the line $A P$ passes through the circumcenter of triangles $E P D$ and $B P C$.
7 Let A be the sequence of zeroes and ones (binary sequence). The sequence can be modified by the following operation: we may pick a block or a contiguous subsequence where there are
an unequal number of zeroes and ones, and then flip their order within the block (so block $a_{1}, a_{2}, \ldots, a_{r}$ becomes $\left.a_{r}, a_{r-1}, \ldots, a_{1}\right)$.

As an example, let A be the sequence $1,1,0,0,1$. We can pick block $1,0,0$ and flip it, so the sequence $1, \widehat{1,0,0}, 1$ becomes $1,0,0,1,1$. However, we cannot pick block $1,1,0,0$ and flip their order since they contain the same number of 1 s and 0 s .

Two sequences A and B are called related if A can be transformed into B using a finite number the operation mentioned above.

Determine the largest natural number n for which there exists n different sequences $A_{1}, A_{2}, \ldots, A_{n}$ where each sequence consists of 2022 digits, and for every index $i \neq j$, the sequence A_{i} is not related to A_{j}.

8 Determine the smallest positive real K such that the inequality

$$
K+\frac{a+b+c}{3} \geq(K+1) \sqrt{\frac{a^{2}+b^{2}+c^{2}}{3}}
$$

holds for any real numbers $0 \leq a, b, c \leq 1$.
Proposed by Fajar Yuliawan, Indonesia

