AoPS Community

Kettering University Mathematics Olympiad For High School Students

www.artofproblemsolving.com/community/c3168268
by parmenides51

- $\quad \mathbf{p} 1$. Prove that if a, b, c, d are real numbers, then

$$
\max \{a+c, b+d\} \leq \max \{a, b\}+\max \{c, d\}
$$

p2. Find the smallest positive integer whose digits are all ones which is divisible by 3333333 .
p3. Find all integer solutions of the equation $\sqrt{x}+\sqrt{y}=\sqrt{2560}$.
p4. Find the irrational number:

$$
A=\sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}+\ldots+\frac{1}{2} \sqrt{\frac{1}{2}}}}}
$$

(n square roots).
p5. The Math country has the shape of a regular polygon with N vertexes. N airports are located on the vertexes of that polygon, one airport on each vertex. The Math Airlines company decided to build K additional new airports inside the polygon. However the company has the following policies:
(i) it does not allow three airports to lie on a straight line,
(ii) any new airport with any two old airports should form an isosceles triangle.

How many airports can be added to the original N ?
p6. The area of the union of the n circles is greater than $9 \mathrm{~m}^{2}$ (some circles may have non-empty intersections). Is it possible to choose from these n circles some number of non-intersecting circles with total area greater than $1 \mathrm{~m}^{2}$?

PS. You should use hide for answers.

