AoPS Community

www.artofproblemsolving.com/community/c3169364
by parmenides51

1 Prove that

$$
A B+P Q+Q R+R P \leq A P+A Q+A R+B P+B Q+B R
$$

where A, B, P, Q and R are any five points in a plane.
2 Let $n>2$ be an even number. The squares of an $n \times n$ chessboard are coloured with $\frac{1}{2} n^{2}$ colours in such a way that every colour is used for colouring exactly two of the squares. Prove that one can place n rooks on squares of n different colours such that no two of the rooks can take each other.

3 For a positive integer $n, r(n)$ denote the sum of the remainders when n is divided by $1,2, \ldots, n$ respectively. Prove that $r(k)=r(k-1)$ for infinitely many positive integers k.

