AoPS Community

www.artofproblemsolving.com/community/c3169370
by parmenides51

1 Writing down the first 4 rows of the Pascal triangle in the usual way and then adding up the numbers in vertical columns, we obtain 7 numbers as shown above. If we repeat this procedure with the first 1024 rows of the Pascal triangle, how many of the 2047 numbers thus obtained will be odd?
https://cdn.artofproblemsolving.com/attachments/8/a/4dc4a815d8b002c9f36a6da7ad6e1c11a848e png
$2 A_{1} B_{1} A_{2}, B_{1} A_{2} B_{2}, A_{2} B_{2} A_{3}, \ldots, B_{13} A_{14} B_{14}, A_{14} B_{14} A_{1}$ and $B_{14} A_{1} B_{1}$ are equilateral rigid plates that can be folded along the edges $A_{1} B_{1}, B_{1} A_{2}, \ldots, A_{14} B_{14}$ and $B_{14} A_{1}$ respectively. Can they be folded so that all 28 plates lie in the same plane?

3 Given are n integers, not necessarily distinct, and two positive integers p and q. If the n numbers are not all distinct, choose two equal ones. Add p to one of them and subtract q from the other. If there are still equal ones among the n numbers, repeat this procedure. Prove that after a finite number of steps, all n numbers are distinct.

