AoPS Community

www.artofproblemsolving.com/community/c3169371
by parmenides51

1 Let x, y and z be rational numbers satisfying

$$
x^{3}+3 y^{3}+9 z^{3}-9 x y z=0 .
$$

Prove that $x=y=z=0$.
2 Prove that $f(2) \geq 3^{n}$ where the polynomial $f(x)=x_{n}+a_{1} x_{n-1}+\ldots+a_{n-1} x+1$ has non-negative coefficients and n real roots.

3 Given are $n+1$ points $P_{1}, P_{2}, \ldots, P_{n}$ and Q in the plane, no three collinear. For any two different points P_{i} and P_{j}, there is a point P_{k} such that the point Q lies inside the triangle $P_{i} P_{j} P_{k}$. Prove that n is an odd number.

