AoPS Community

Austria Beginners' Competition 2005

www.artofproblemsolving.com/community/c3172408
by parmenides51

1 Show that there are no positive integers a und b such that $4 a(a+1)=b(b+3)$
2 Determine the number of integer pairs (x, y) such that $(|x|-2)^{2}+(|y|-2)^{2}<5$.
3 Determine all triples (x, y, z) of real numbers that satisfy all of the following three equations:

$$
\left\{\begin{array}{l}
\lfloor x\rfloor+\{y\}=z \\
\lfloor y\rfloor+\{z\}=x \\
\lfloor z\rfloor+\{x\}=y
\end{array}\right.
$$

4 We are given the triangle $A B C$ with an area of 2000 . Let P, Q, R be the midpoints of the sidess $B C, A C, A B$. Let U, V, W be the midpoints of the sides $Q R, P R, P Q$. The lengths of the line segments $A U, B V, C W$ are x, y, z. Show that there exists a triangle with side lengths x, y and z and caluclate it's area.

