AoPS Community

Math Prize for Girls 2022 Problems

www.artofproblemsolving.com/community/c3173050
by Ravi B

1 Determine the real value of t that minimizes the expression

$$
\sqrt{t^{2}+\left(t^{2}-1\right)^{2}}+\sqrt{(t-14)^{2}+\left(t^{2}-46\right)^{2}} .
$$

2 Let b and c be random integers from the set $\{1,2, \ldots, 100\}$, chosen uniformly and independently. What is the probability that the roots of the quadratic $x^{2}+b x+c$ are real?

3 Let $A B C D$ be a square face of a cube with edge length 2 . A plane P that contains A and the midpoint of $\overline{B C}$ splits the cube into two pieces of the same volume. What is the square of the area of the intersection of P and the cube?

4 Determine the largest integer n such that $n<103$ and $n^{3}-1$ is divisible by 103 .
5 Given a real number a, the floor of a, written $\lfloor a\rfloor$, is the greatest integer less than or equal to a. For how many real numbers x such that $1 \leq x \leq 20$ is

$$
x^{2}+\lfloor 2 x\rfloor=\left\lfloor x^{2}\right\rfloor+2 x ?
$$

6 An L-shaped region is formed by attaching two 2 by 5 rectangles to adjacent sides of a 2 by 2 square as shown below.

2022 Math Prize for Girls Problems

The resulting shape has an area of 24 square units. How many ways are there to tile this shape with 2 by 1 dominos (each of which may be placed horizontally or vertically)?

7 The quadrilateral $A B C D$ is an isosceles trapezoid with $A B=C D=1, B C=2$, and $D A=$ $1+\sqrt{3}$. What is the measure of $\angle A C D$ in degrees?

8 Let S be the set of numbers of the form $n^{5}-5 n^{3}+4 n$, where n is an integer that is not a multiple of 3 . What is the largest integer that is a divisor of every number in S ?

9 Let $\triangle P Q O$ be the unique right isosceles triangle inscribed in the parabola $y=12 x^{2}$ with P in the first quadrant, right angle at Q in the second quadrant, and O at the vertex (0,0). Let $\triangle A B V$ be the unique right isosceles triangle inscribed in the parabola $y=x^{2} / 5+1$ with A in the first quadrant, right angle at B in the second quadrant, and V at the vertex $(0,1)$. The y-coordinate of A can be uniquely written as $u q^{2}+v q+w$, where q is the x-coordinate of Q and u, v, and w are integers. Determine $u+v+w$.

10 An algal cell population is found to have a_{k} cells on day k. Each day, the number of cells at least doubles. If $a_{0} \geq 1$ and $a_{3} \leq 60$, how many quadruples of integers ($a_{0}, a_{1}, a_{2}, a_{3}$) could represent the algal cell population size on the first 4 days?

11 Let A, B, C, D, E, and F be 6 points around a circle, listed in clockwise order. We have $A B=3 \sqrt{2}$, $B C=3 \sqrt{3}, C D=6 \sqrt{6}, D E=4 \sqrt{2}$, and $E F=5 \sqrt{2}$. Given that $\overline{A D}, \overline{B E}$, and $\overline{C F}$ are concurrent, determine the square of $A F$.

12 Solve the equation

$$
\sin 9^{\circ} \sin 21^{\circ} \sin \left(102^{\circ}+x^{\circ}\right)=\sin 30^{\circ} \sin 42^{\circ} \sin x^{\circ}
$$

for x where $0<x<90$.
13 The roots of the polynomial $x^{4}-4 i x^{3}+3 x^{2}-14 i x-44$ form the vertices of a parallelogram in the complex plane. What is the area of the parallelogram?

14 Across the face of a rectangular post-it note, you idly draw lines that are parallel to its edges. Each time you draw a line, there is a 50% chance it'll be in each direction and you never draw over an existing line or the edge of the post-it note. After a few minutes, you notice that you've drawn 20 lines. What is the expected number of rectangles that the post-it note will be partitioned into?

15 What is the smallest positive integer m such that $15!m$ can be expressed in more than one way as a product of 16 distinct positive integers, up to order?

16 A snail begins a journey starting at the origin of a coordinate plane. The snail moves along line segments of length $\sqrt{10}$ and in any direction such that the horizontal and vertical displacements are both integers. As the snail moves, it leaves a trail tracing out its entire journey. After a while, this trail can form various polygons. What is the smallest possible area of a polygon that could be created by the snail's trail?

17 Let O be the set of odd numbers between 0 and 100. Let T be the set of subsets of O of size 25 . For any finite subset of integers S, let $P(S)$ be the product of the elements of S. Define $n=\sum_{S \in T} P(S)$. If you divide n by 17 , what is the remainder?

18 Let A be the locus of points (α, β, γ) in the $\alpha \beta \gamma$-coordinate space that satisfy the following properties:
(I) We have $\alpha, \beta, \gamma>0$.
(II) We have $\alpha+\beta+\gamma=\pi$.
(III) The intersection of the three cylinders in the $x y z$-coordinate space given by the equations

$$
\begin{aligned}
& y^{2}+z^{2}=\sin ^{2} \alpha \\
& z^{2}+x^{2}=\sin ^{2} \beta \\
& x^{2}+y^{2}=\sin ^{2} \gamma
\end{aligned}
$$

is nonempty.
Determine the area of A.
19 Let S_{-}be the semicircular arc defined by

$$
(x+1)^{2}+\left(y-\frac{3}{2}\right)^{2}=\frac{1}{4} \text { and } x \leq-1 .
$$

Let S_{+}be the semicircular arc defined by

$$
(x-1)^{2}+\left(y-\frac{3}{2}\right)^{2}=\frac{1}{4} \text { and } x \geq 1 .
$$

Let R be the locus of points P such that P is the intersection of two lines, one of the form $A x+B y=1$ where $(A, B) \in S_{-}$and the other of the form $C x+D y=1$ where $(C, D) \in S_{+}$. What is the area of R ?

20 Let $a_{n}=n(2 n+1)$. Evaluate

$$
\left|\sum_{1 \leq j<k \leq 36} \sin \left(\frac{\pi}{6}\left(a_{k}-a_{j}\right)\right)\right|
$$

