AoPS Community

Kurschak Competition 1973

www.artofproblemsolving.com/community/c3174938
by parmenides51

1 For what positive integers n, k (with $k<n$) are the binomial coefficients

$$
\binom{n}{k-1},\binom{n}{k},\binom{n}{k+1}
$$

three successive terms of an arithmetic progression?
2 For any positive real r, let $d(r)$ be the distance of the nearest lattice point from the circle center the origin and radius r. Show that $d(r)$ tends to zero as r tends to infinity.
$3 n>4$ planes are in general position (so every 3 planes have just one common point, and no point belongs to more than 3 planes). Show that there are at least $\frac{2 n-3}{4}$ tetrahedra among the regions formed by the planes.

