AoPS Community

Kurschak Competition 1974

www.artofproblemsolving.com/community/c3174939
by parmenides51

1 A library has one exit and one entrance and a blackboard at each. Only one person enters or leaves at a time. As he does so he records the number of people found/remaining in the library on the blackboard. Prove that at the end of the day exactly the same numbers will be found on the two blackboards (possibly in a different order).
$2 S_{n}$ is a square side $\frac{1}{n}$. Find the smallest k such that the squares $S_{1}, S_{2}, S_{3}, \ldots$ can be put into a square side k without overlapping.

3 Let

$$
p_{k}(x)=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\ldots+\frac{(-x)^{2 k}}{(2 k)!}
$$

Show that it is non-negative for all real x and all positive integers k.

