AoPS Community

Kurschak Competition 1976

www.artofproblemsolving.com/community/c3174941
by parmenides51
$1 \quad A B C D$ is a parallelogram. P is a point outside the parallelogram such that angles $\angle P A B$ and $\angle P C B$ have the same value but opposite orientation. Show that $\angle A P B=\angle D P C$.

2 A lottery ticket is a choice of 5 distinct numbers from $1,2,3, \ldots, 90$. Suppose that 55 distinct lottery tickets are such that any two of them have a common number. Prove that one can find four numbers such that every ticket contains at least one of the four.

3 Prove that if the quadratic $x^{2}+a x+b$ is always positive (for all real x) then it can be written as the quotient of two polynomials whose coefficients are all positive.

