AoPS Community

Korea National Olympiad 2022

www.artofproblemsolving.com/community/c3187925
by chrono223, Olympiadium

1 Three sequences a_{n}, b_{n}, c_{n} satisfy the following conditions.
$-a_{1}=2, b_{1}=4, c_{1}=5$
$-\forall n, a_{n+1}=b_{n}+\frac{1}{c_{n}}, b_{n+1}=c_{n}+\frac{1}{a_{n}}, c_{n+1}=a_{n}+\frac{1}{b_{n}}$
Prove that for all positive integers $n, \max \left(a_{n}, b_{n}, c_{n}\right)>\sqrt{2 n+13}$.
2 In a scalene triangle $A B C$, let the angle bisector of A meets side $B C$ at D. Let E, F be the circumcenter of the triangles $A B D$ and $A D C$, respectively. Suppose that the circumcircles of the triangles $B D E$ and $D C F$ intersect at $P(\neq D)$, and denote by O, X, Y the circumcenters of the triangles $A B C, B D E, D C F$, respectively. Prove that $O P$ and $X Y$ are parallel.

3 Suppose that the sequence $\left\{a_{n}\right\}$ of positive integers satisfies the following conditions:
-For an integer $i \geq 2022$, define a_{i} as the smallest positive integer x such that $x+\sum_{k=i-2021}^{i-1} a_{k}$ is a perfect square.
-There exists infinitely many positive integers n such that $a_{n}=4 \times 2022-3$.
Prove that there exists a positive integer N such that $\sum_{k=n}^{n+2021} a_{k}$ is constant for every integer $n \geq N$.
And determine the value of $\sum_{k=N}^{N+2021} a_{k}$.
4 For positive integers $m, n(m>n), a_{n+1}, a_{n+2}, \ldots, a_{m}$ are non-negative integers that satisfy the following inequality.

$$
2>\frac{a_{n+1}}{n+1} \geq \frac{a_{n+2}}{n+2} \geq \cdots \geq \frac{a_{m}}{m}
$$

Find the number of pair $\left(a_{n+1}, a_{n+2}, \cdots, a_{m}\right)$.
5 For a scalene triangle $A B C$ with an incenter I, let its incircle meets the sides $B C, C A, A B$ at D, E, F, respectively. Denote by P the intersection of the lines $A I$ and $D F$, and Q the intersection of the lines $B I$ and $E F$. Prove that $\overline{P Q}=\overline{C D}$.
$6 \quad n(\geq 4)$ islands are connected by bridges to satisfy the following conditions:
-Each bridge connects only two islands and does not go through other islands.
-There is at most one bridge connecting any two different islands.
-There does not exist a list $A_{1}, A_{2}, \ldots, A_{2 k}(k \geq 2)$ of distinct islands that satisfy the following:

For every $i=1,2, \ldots, 2 k$, the two islands A_{i} and A_{i+1} are connected by a bridge. (Let

$$
\left.A_{2 k+1}=A_{1}\right)
$$

Prove that the number of the bridges is at most $\frac{3(n-1)}{2}$.
7 Suppose that the sequence $\left\{a_{n}\right\}$ of positive reals satisfies the following conditions:
$-a_{i} \leq a_{j}$ for every positive integers $i<j$.
-For any positive integer $k \geq 3$, the following inequality holds:

$$
\left(a_{1}+a_{2}\right)\left(a_{2}+a_{3}\right) \cdots\left(a_{k-1}+a_{k}\right)\left(a_{k}+a_{1}\right) \leq\left(2^{k}+2022\right) a_{1} a_{2} \cdots a_{k}
$$

Prove that $\left\{a_{n}\right\}$ is constant.
$8 \quad p$ is a prime number such that its remainder divided by 8 is 3 . Find all pairs of rational numbers (x, y) that satisfy the following equation.

$$
p^{2} x^{4}-6 p x^{2}+1=y^{2}
$$

