

AoPS Community

Greece Team Selection Test 2022

www.artofproblemsolving.com/community/c3191758

by DottedCaculator, parmenides51, Lukaluce

1 Find all positive integers $n \ge 1$ such that there exists a pair (a, b) of positive integers, such that $a^2 + b + 3$ is not divisible by the cube of any prime, and

$$n=\frac{ab+3b+8}{a^2+b+3}.$$

2 Consider triangle ABC with AB < AC < BC, inscribed in triangle Γ_1 and the circles $\Gamma_2(B, AC)$ and $\Gamma_2(C, AB)$. A common point of circle Γ_2 and Γ_3 is point E, a common point of circle Γ_1 and Γ_3 is point F and a common point of circle Γ_1 and Γ_2 is point G, where the points E, F, G lie on the same semiplane defined by line BC, that point A doesn't lie in. Prove that circumcenter of triangle EFG lies on circle Γ_1 .

Note: By notation $\Gamma(K, R)$, we mean random circle Γ has center K and radius R.

3 Find largest possible constant M such that, for any sequence a_n , n = 0, 1, 2, ... of real numbers, that satisfies the conditions : i) $a_0 = 1$, $a_1 = 3$ ii) $a_0 + a_1 + ... + a_{n-1} \ge 3a_n - a_{n+1}$ for any integer $n \ge 1$ to be true that $a_{n+1} \ge M$

$$\frac{a_{n+1}}{a_n} > M$$

for any integer $n \ge 0$.

4 In an exotic country, the National Bank issues coins that can take any value in the interval [0, 1]. Find the smallest constant c > 0 such that the following holds, no matter the situation in that country:

[i]Any citizen of the exotic country that has a finite number of coins, with a total value of no more than 1000, can split those coins into 100 boxes, such that the total value inside each box is at most c.[/i]

Art of Problem Solving is an ACS WASC Accredited School.