AoPS Community

Greece Team Selection Test 2022

www.artofproblemsolving.com/community/c3191758
by DottedCaculator, parmenides51, Lukaluce

1 Find all positive integers $n \geq 1$ such that there exists a pair (a, b) of positive integers, such that $a^{2}+b+3$ is not divisible by the cube of any prime, and

$$
n=\frac{a b+3 b+8}{a^{2}+b+3} .
$$

2 Consider triangle $A B C$ with $A B<A C<B C$, inscribed in triangle Γ_{1} and the circles $\Gamma_{2}(B, A C)$ and $\Gamma_{2}(C, A B)$. A common point of circle Γ_{2} and Γ_{3} is point E, a common point of circle Γ_{1} and Γ_{3} is point F and a common point of circle Γ_{1} and Γ_{2} is point G, where the points E, F, G lie on the same semiplane defined by line $B C$, that point A doesn't lie in. Prove that circumcenter of triangle $E F G$ lies on circle Γ_{1}.

Note: By notation $\Gamma(K, R)$, we mean random circle Γ has center K and radius R.
3 Find largest possible constant M such that, for any sequence $a_{n}, n=0,1,2, \ldots$ of real numbers, that satisfies the conditions:
i) $a_{0}=1, a_{1}=3$
ii) $a_{0}+a_{1}+\ldots+a_{n-1} \geq 3 a_{n}-a_{n+1}$ for any integer $n \geq 1$
to be true that

$$
\frac{a_{n+1}}{a_{n}}>M
$$

for any integer $n \geq 0$.
4 In an exotic country, the National Bank issues coins that can take any value in the interval $[0,1]$. Find the smallest constant $c>0$ such that the following holds, no matter the situation in that country:
[i]Any citizen of the exotic country that has a finite number of coins, with a total value of no more than 1000 , can split those coins into 100 boxes, such that the total value inside each box is at most c. [/i]

