Art of Problem Solving

AoPS Community

2022 Korea Junior Math Olympiad

KJMO 2022

www.artofproblemsolving.com/community/c3192612
by parmenides51, pseudo1, Olympiadium

- \quad day 1

1 The inscribed circle of an acute triangle $A B C$ meets the segments $A B$ and $B C$ at D and E respectively. Let I be the incenter of the triangle $A B C$. Prove that the intersection of the line $A I$ and $D E$ is on the circle whose diameter is $A C$ (passing through A, C).

3 For a given odd prime number p, define $f(n)$ the remainder of d divided by p, where d is the biggest divisor of n which is not a multiple of p. For example when $p=5, f(6)=1, f(35)=$ $2, f(75)=3$. Define the sequence $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ of integers as the followings:
$-a_{1}=1$
$-a_{n+1}=a_{n}+(-1)^{f(n)+1}$ for all positive integers n.
Determine all integers m, such that there exist infinitely many positive integers k such that $m=$ a_{k}.
$4 \quad$ Find all function $f: \mathbb{N} \longrightarrow \mathbb{N}$ such that
forall positive integers x and $y, \frac{f(x+y)-f(x)}{f(y)}$ is again a positive integer not exceeding 2022^{2022}.

- \quad day 2

5 A sequence of real numbers a_{1}, a_{2}, \ldots satisfies the following conditions. $a_{1}=2, a_{2}=11$.
for all positive integer $n, 2 a_{n+2}=3 a_{n}+\sqrt{5\left(a_{n}^{2}+a_{n+1}^{2}\right)}$
Prove that a_{n} is a rational number for each of positive integer n.
6 Let $A B C$ be a isosceles triangle with $\overline{A B}=\overline{A C}$. Let $D(\neq A, C)$ be a point on the side $A C$, and circle Ω is tangent to $B D$ at point E, and $A C$ at point C. Denote by $F(\neq E)$ the intersection of the line $A E$ and the circle Ω, and $G(\neq a)$ the intersection of the line $A C$ and the circumcircle of the triangle $A B F$. Prove that points D, E, F, and G are concyclic.

7 Consider n cards with marked numbers 1 through n. No number have repeted, namely, each number has marked exactly at one card. They are distributed on n boxes so that each box contains exactly one card initially. We want to move all the cards into one box all together according to the following instructions
The instruction: Choose an integer $k(1 \leq k \leq n)$, and move a card with number k to the other box such that sum of the number of the card in that box is multiple of k.
Find all positive integer n so that there exists a way to gather all the cards in one box.

Thanks to @scnwust for correcting wrong translation.
8 Find all pairs (x, y) of rational numbers such that

$$
x y^{2}=x^{2}+2 x-3
$$

