AoPS Community

ICMC 2022-2023
www.artofproblemsolving.com/community/c3212380
by mastermind.hk16

Round 127 November 2022
1 Two straight lines divide a square of side length 1 into four regions. Show that at least one of the regions has a perimeter greater than or equal to 2 .
Proposed by Dylan Toh
2 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}(x)>f(x)>0$ for all real numbers x. Show that $f(8)>2022 f(0)$.

Proposed by Ethan Tan
3 Bugs Bunny plays a game in the Euclidean plane. At the n-th minute ($n \geq 1$), Bugs Bunny hops a distance of F_{n} in the North, South, East, or West direction, where F_{n} is the n-th Fibonacci number (defined by $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$). If the first two hops were perpendicular, prove that Bugs Bunny can never return to where he started.

Proposed by Dylan Toh
$4 \quad$ Let \mathcal{G} be a simple graph with n vertices and m edges such that no two cycles share an edge. Prove that $2 m<3 n$.

Note: A simple graph is a graph with at most one edge between any two vertices and no edges from any vertex to itself. A cycle is a sequence of distinct vertices v_{1}, \ldots, v_{n} such that there is an edge between any two consecutive vertices, and between v_{n} and v_{1}.

Proposed by Ethan Tan
5 Let $[0,1]$ be the set $\{x \in \mathbb{R}: 0 \leq x \leq 1\}$. Does there exist a continuous function $g:[0,1] \rightarrow[0,1]$ such that no line intersects the graph of g infinitely many times, but for any positive integer n there is a line intersecting g more than n times?

Proposed by Ethan Tan

6 Consider the sequence defined by $a_{1}=2022$ and $a_{n+1}=a_{n}+e^{-a_{n}}$ for $n \geq 1$. Prove that there exists a positive real number r for which the sequence

$$
\left\{r a_{1}\right\},\left\{r a_{10}\right\},\left\{r a_{100}\right\}, \ldots
$$

converges.

Note: $\{x\}=x-\lfloor x\rfloor$ denotes the part of x after the decimal point.
Proposed by Ethan Tan
Round 226 February 2023
1 The city of Atlantis is built on an island represented by $[-1,1]$, with skyline initially given by $f(x)=1-|x|$. The sea level is currently $y=0$, but due to global warming, it is rising at a rate of 0.01 a year. For any position $-1<x<1$, while the building at x is not completely submerged, then it is instantaneously being built upward at a rate of r per year, where r is the distance (along the x-axis) from this building to the nearest completely submerged building.
How long will it be until Atlantis becomes completely submerged?
Proposed by Ethan Tan
2 Show that if the distance between opposite edges of a tetrahedron is at least 1 , then its volume is at least $\frac{1}{3}$.
Proposed by Simeon Kiflie
3 The numbers $1,2, \ldots, n$ are written on a blackboard and then erased via the following process:

- Before any numbers are erased, a pair of numbers is chosen uniformly at random and circled.
- Each minute for the next $n-1$ minutes, a pair of numbers still on the blackboard is chosen uniformly at random and the smaller one is erased.
- In minute n, the last number is erased.

What is the probability that the smaller circled number is erased before the larger?
Proposed by Ethan Tan
4 Do there exist infinitely many positive integers m such that the sum of the positive divisors of m (including m itself) is a perfect square?

Proposed by Dylan Toh
5 A clock has an hour, minute, and second hand, all of length 1 . Let T be the triangle formed by the ends of these hands. A time of day is chosen uniformly at random. What is the expected value of the area of T ?

Proposed by Dylan Toh

