AoPS Community

Brazilian Undergraduate Math Olympiad 2022

www.artofproblemsolving.com/community/c3214841
by pog, justkeeptrying

- \quad Day 1

1 Let $0<a<1$. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ continuous at $x=0$ such that $f(x)+f(a x)=$ $x, \forall x \in \mathbb{R}$

2 Let G be the set of 2×2 matrices that such

$$
G=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}, a d-b c=1, c \text { is a multiple of } 3\right\}
$$

and two matrices in G :

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad B=\left(\begin{array}{ll}
-1 & 1 \\
-3 & 2
\end{array}\right)
$$

Show that any matrix in G can be written as a product $M_{1} M_{2} \cdots M_{r}$ such that $M_{i} \in\left\{A, A^{-1}, B, B^{-1}\right\}, \forall i \leq$ r

3 Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of integers. Define $a_{n}^{(0)}=a_{n}$ for all $n \in \mathbb{N}$. For all $M \geq 0$, we define $\left(a_{n}^{(M+1)}\right)_{n \in \mathbb{N}}: a_{n}^{(M+1)}=a_{n+1}^{(M)}-a_{n}^{(M)}, \forall n \in \mathbb{N}$. We say that $\left(a_{n}\right)_{n \in \mathbb{N}}$ is $(\mathrm{M}+1)$-self-referencing if there exists k_{1} and k_{2} fixed positive integers such that $a_{n+k_{1}}=a_{n+k_{2}}^{(M+1)}, \forall n \in \mathbb{N}$.
(a) Does there exist a sequence of integers such that the smallest M such that it is M-self-referencing is $M=2022$?
(a) Does there exist a stricly positive sequence of integers such that the smallest M such that it is M-self-referencing is $M=2022$?

- \quad Day 2
$4 \quad$ Let $\alpha, c>0$, define $x_{1}=c$ and let $x_{n+1}=x_{n} e^{-x_{n}^{\alpha}}$ for $n \geq 1$. For which values of β does $\sum_{i=1}^{\infty} x_{n}^{\beta}$ converge?
$5 \quad$ Given $X \subset \mathbb{N}$, define $d(X)$ as the largest $c \in[0,1]$ such that for any $a<c$ and $n_{0} \in \mathbb{N}$, there exists $m, r \in \mathbb{N}$ with $r \geq n_{0}$ and $\frac{|X \cap[m, m+r)|}{r} \geq a$.
Let $E, F \subset \mathbb{N}$ such that $d(E) d(F)>1 / 4$. Prove that for any prime p and $k \in \mathbb{N}$, there exists $m \in E, n \in F$ such that $m \equiv n\left(\bmod p^{k}\right)$

6 Let $p \equiv 3(\bmod 4)$ be a prime and θ some angle such that $\tan (\theta)$ is rational. Prove that $\tan ((p+$ $1) \theta$) is a rational number with numerator divisible by p, that is, $\tan ((p+1) \theta)=\frac{u}{v}$ with $u, v \in$ $\mathbb{Z}, v>0, \operatorname{mdc}(u, v)=1$ and $u \equiv 0(\bmod p)$.

