AoPS Community

Spain Mathematical Olympiad 1966

www.artofproblemsolving.com/community/c3218175
by parmenides51

- \quad Day 1

1 To a manufacturer of three products whose unit prices are 50,70 , and 65 pta, a retailer asks him for 100 units, remitting him 6850 pta as payment, on the condition that you send as many of the higher-priced product as possible and the rest of the other two. How many of each product should he send to serve the request?

2 A three-digit number is written $x y z$ in the base 7 system and $z y x$ in the base 9 system. What is the number?

3 Given a regular pentagon, consider the convex pentagon limited by its diagonals. You are asked to calculate:
a) The similarity relation between the two convex pentagons.
b) The relationship of their areas.
c) The ratio of the homothety that transforms the first into the second.

4 You want to hang a weight P so that it is 7 m below a ceiling. To do this, it is suspended by means of a vertical cable attached to the midpoint M of a chain hung by its ends from two points on the ceiling A and B distant from each other 4 m . The price of the cable $P M$ is $p \mathrm{pta} / \mathrm{m}$ and that of the chain $A M B$ is $q \mathrm{pta} / \mathrm{m}$. It is requested:
a) Determine the lengths of the cable and the chain to obtain the lowest price cost of installation.
b) Discuss the solution for the different values of the relation p / q of both prices.
(It is assumed that the weight is large enough to be considered rectile lines the chain segments $A M$ and $M B$).

- Day 2

5 The length of the hypotenuse $B C$ of a right triangle $A B C$ is a, and on it the points M and N are taken such that $B M=N C=k$, with $k<a / 2$. Assuming that (only) the data a and k are known, calculate:
a) The value of the sum of the squares of the lengths $A M$ and $A N$.
b) The ratio of the areas of triangles $A B C$ and $A M N$.
c) The area enclosed by the circle that passes through the points $A, M^{\prime}, N^{\prime}$, where M^{\prime} is the orthogonal projection of M onto $A C$ and N^{\prime} that of N onto $A B$.

6 They tell us that a married couple has 5 children. Calculate the probability that among them there are at least two men and at least one woman. Probability of being born male is considered $1 / 2$.

7 Determine a geometric progression of seven terms, knowing the sum, 7 , of the first three, and the sum, 112, of the last three.

8 Determine the values of a, b, c, so that the graphical representation of the function

$$
y=a x^{3}+b x^{2}+c x
$$

has an inflection point at the point of abscissa $x=3$, with tangent at the point of equation $x-4 y+1=0$. Then draw the corresponding graph.

