

AoPS Community

7

1969 Spain Mathematical Olympiad

Spain Mathematical Olympiad 1969

www.artofproblemsolving.com/community/c3218254 by parmenides51

-	Day 1
1	Find the locus of the centers of the inversions that transform two points A, B of a given circle γ , at diametrically opposite points of the inverse circles of γ .
2	Find the locus of the affix M , of the complex number z , so that it is aligned with the affixes of i and iz .
3	A bag contains plastic cubes of the same size, whose faces have been painted in colors: white, red, yellow, green, blue and violet (without repeating a color on two faces of the same cube). How many of these cubes can there be distinguishable to each other?
4	A circle of radius R is divided into 8 equal parts. The points of division are denoted successively by A, B, C, D, E, F, G and H . Find the area of the square formed by drawing the chords AF , BE, CH and DG .
_	Day 2
5	Show that a convex polygon with more than four sides cannot be decomposed into two others, both similar to the first (directly or inversely), by means of a single rectilinear cut. Reasonably specify which are the quadrilaterals and triangles that admit a decomposition of this type.
6	Given a polynomial of real coefficients P(x) , can it be affirmed that for any real value of x is true of one of the following inequalities:
	$P(x) \le P(x)^2; \ P(x) < 1 + P(x)^2; \ P(x) \le \frac{1}{2} + \frac{1}{2}P(x)^2.$
	Find a simple general procedure (among the many existing ones) that allows, provided we are given two polynomials $P(x)$ and $Q(x)$, find another $M(x)$ such that for every value of x , at the

given two polynomials P(x) and Q(x), find another M(x) such that for every value of x, at the same time -M(x) < P(x) < M(x) and -M(x) < Q(x) < M(x).

A convex polygon $A_1A_2...A_n$ of n sides and inscribed in a circle, has its sides that satisfy the inequalities

 $A_n A_1 > A_1 A_2 > A_2 A_3 > \ldots > A_{n-1} A_n$

Show that its interior angles satisfy the inequalities

 $\angle A_1 < \angle A_2 < \angle A_3 < \ldots < \angle A_{n-1}, \angle A_{n-1} > \angle A_n > \angle A_1.$

8 The house SEAT recommends to the users, for the correct conservation of the wheels, periodic replacements of the same in the form R → 3 → 2 → 1 → 4 → R, according to the numbering of the figure. Calling G to this change of wheels, G² = GG to making this change twice, and so on for the other powers of G,
a) Show that the set of these powers forms a group, and study it.
b) Each puncture of one of the wheels is also equivalent to a substitution in which said wheel is replaced by the spare one (R) and, once repaired, it comes to occupy the place of this obtained G as a product of prick transformations. Do they form a group?
https://cdn.artofproblemsolving.com/attachments/4/a/712fede88321c67753417fda828a08ba528b4 png

AoPSOnline (AoPSAcademy AoPS Content AoPS C

Art of Problem Solving is an ACS WASC Accredited School.