

AoPS Community

2014 German National Olympiad

German National Olympiad 2014

www.artofproblemsolving.com/community/c3218478 by sqrtX, jlammy, gobathegreat

-	Day 1
1	For which non-negative integers n is
	$K = 5^{2n+3} + 3^{n+3} \cdot 2^n$
	prime?
2	For a positive integer n , let y_n be the number of n -digit positive integers containing only the digits $2, 3, 5, 7$ and which do not have a 5 directly to the right of a 2. If $r \ge 1$ and $m \ge 2$ are integers, prove that y_{m-1} divides y_{rm-1} .
3	Given two positive integers n and k , we say that k is [i] n -ergetic[/i] if: However the elements of $M = \{1, 2,, k\}$ are coloured in red and green, there exist n not necessarily distinct integers of the same colour whose sum is again an element of M of the same colour. For each positive integer n , determine the least n -ergetic integer, if it exists.
-	Day 2
4	For real numbers x , y and z , solve the system of equations:
	$x^3 + y^3 = 3y + 3z + 4$
	$y^3 + z^3 = 3z + 3x + 4$
	$x^3 + z^3 = 3x + 3y + 4$
5	There are 9 visually indistinguishable coins, and one of them is fake and thus lighter. We are given 3 indistinguishable balance scales to find the fake coin; however, one of the scales is defective and shows a random result each time. Show that the fake coin can still be found with 4 weighings.

6 Let *ABCD* be a circumscribed quadrilateral and *M* the centre of the incircle. There are points *P* and *Q* on the lines *MA* and *MC* such that $\angle CBA = 2\angle QBP$. Prove that $\angle ADC = 2\angle PDQ$.

AoPS Online 🟟 AoPS Academy 🔯 AoPS 🗱