AoPS Community

German National Olympiad 2014

www.artofproblemsolving.com/community/c3218478
by sqrtX, jlammy, gobathegreat

- Day 1

1 For which non-negative integers n is

$$
K=5^{2 n+3}+3^{n+3} \cdot 2^{n}
$$

prime?
2 For a positive integer n, let y_{n} be the number of n-digit positive integers containing only the digits $2,3,5,7$ and which do not have a 5 directly to the right of a 2 . If $r \geq 1$ and $m \geq 2$ are integers, prove that y_{m-1} divides $y_{r m-1}$.

3 Given two positive integers n and k, we say that k is [i] n-ergetic[/i] if:
However the elements of $M=\{1,2, \ldots, k\}$ are coloured in red and green, there exist n not necessarily distinct integers of the same colour whose sum is again an element of M of the same colour. For each positive integer n, determine the least n-ergetic integer, if it exists.

- \quad Day 2

4 For real numbers x, y and z, solve the system of equations:

$$
\begin{aligned}
& x^{3}+y^{3}=3 y+3 z+4 \\
& y^{3}+z^{3}=3 z+3 x+4 \\
& x^{3}+z^{3}=3 x+3 y+4
\end{aligned}
$$

5 There are 9 visually indistinguishable coins, and one of them is fake and thus lighter. We are given 3 indistinguishable balance scales to find the fake coin; however, one of the scales is defective and shows a random result each time. Show that the fake coin can still be found with 4 weighings.

6 Let $A B C D$ be a circumscribed quadrilateral and M the centre of the incircle. There are points P and Q on the lines $M A$ and $M C$ such that $\angle C B A=2 \angle Q B P$. Prove that $\angle A D C=2 \angle P D Q$.

